首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1475篇
  免费   110篇
  国内免费   1篇
  1586篇
  2024年   5篇
  2023年   16篇
  2022年   42篇
  2021年   60篇
  2020年   34篇
  2019年   43篇
  2018年   51篇
  2017年   41篇
  2016年   52篇
  2015年   74篇
  2014年   78篇
  2013年   112篇
  2012年   112篇
  2011年   109篇
  2010年   61篇
  2009年   48篇
  2008年   53篇
  2007年   68篇
  2006年   62篇
  2005年   67篇
  2004年   66篇
  2003年   51篇
  2002年   51篇
  2001年   19篇
  2000年   8篇
  1999年   13篇
  1998年   10篇
  1996年   5篇
  1995年   4篇
  1994年   7篇
  1993年   8篇
  1992年   7篇
  1991年   9篇
  1990年   8篇
  1988年   5篇
  1987年   15篇
  1986年   9篇
  1985年   6篇
  1983年   5篇
  1981年   8篇
  1980年   4篇
  1979年   5篇
  1978年   5篇
  1976年   4篇
  1975年   4篇
  1974年   4篇
  1972年   7篇
  1967年   5篇
  1958年   3篇
  1928年   3篇
排序方式: 共有1586条查询结果,搜索用时 12 毫秒
21.
22.
We analyzed the association between kisspeptin and plasma adipokines (leptin and adiponectin) in normal-weight and over-weight young females. Thirty young Saudi females, based on their body mass index (BMI), were divided into two groups (15 students/group) as (1) Normal weight (NW): BMI = 18.5–24.99 and (2) Over-weight/obese (OW): BMI ≥ 25. Serum adipokines (leptin, adiponectin) and kisspeptin levels were measured in early follicular, pre-ovulatory, and luteal phase in both groups with ELISA. Menstrual cycle phases were confirmed by serum estradiol levels. There was no association of kisspeptin with leptin in early follicular (r ?0.34, P 0.31), pre-ovulatory (r ?0.32, P 0.34) and luteal phase (r 0.21, P 0.54). Likewise, kisspeptin was not found to be correlated with adiponectin in early follicular (r 0.41, P 0.21), pre ovulatory (r 0.24, P 0.48), and luteal phase (r 0.40, P 0.23) when values recorded during different time points during the cycle were plotted with each other.  相似文献   
23.
Hoppenrath M  Leander BS 《Protist》2006,157(3):279-290
Ebria tripartita is a phagotrophic flagellate present in marine coastal plankton communities worldwide. This is one of two (possibly four) described extant species in the Ebridea, an enigmatic group of eukaryotes with an unclear phylogenetic position. Ebriids have never been cultured, are usually encountered in low abundance and have a peculiar combination of ultrastructural characters including a large nucleus with permanently condensed chromosomes and an internal skeleton composed of siliceous rods. Consequently, the taxonomic history of the group has been tumultuous and has included a variety of affiliations, such as silicoflagellates, dinoflagellates, 'radiolarians' and 'neomonads'. Today, the Ebridea is treated as a eukaryotic taxon incertae sedis because no morphological or molecular features have been recognized that definitively relate ebriids with any other eukaryotic lineage. We conducted phylogenetic analyses of small subunit rDNA sequences from two multi-specimen isolations of Ebria tripartita. The closest relatives to the sequences from Ebria tripartita are environmental sequences from a submarine caldera floor. This newly recognized Ebria clade was most closely related to sequences from described species of Cryothecomonas and Protaspis. These molecular phylogenetic relationships were consistent with current ultrastructural data from all three genera, leading to a robust placement of ebriids within the Cercozoa.  相似文献   
24.
The production of extracellular pullulanase by Bacillus licheniformis NRC22 was investigated using different fermentation modes. In batch culture maximal enzyme activity of 18 U/ml was obtained after 24 h of growth. In continuous fermentation by the free cells, maximal reactor productivity (4.15 KU/l/h) with enzyme concentration of 14.8 U/ml and specific productivity of 334.9 U/g wet cells/h was attained at a dilution rate of 0.28/h, over a period of 25 days. B. licheniformis NRC22 cells were immobilized on Ca-alginate. The immobilization conditions with respect to matrix concentration and cell load was optimized for maximal enzyme production. In repeated batch operation, the activity of the immobilized cells was stable during the 10 cycles and the activity remained between 9.8 and 7.7 U/ml. Continuous production of pullulanase by the immobilized cells was investigated in a packed–bed reactor. Maximal reactor productivity (7.0 KU/h) with enzyme concentration of 16.8 U/ml and specific productivity of 131.64 U/g wet cells/h was attained at dilution rate of 0.42/h. The enzyme activity in the effluent started to decline gradually to the level of 8.7 U/ml after 25 days of the operation.  相似文献   
25.
Högberg MN  Högberg P  Myrold DD 《Oecologia》2007,150(4):590-601
In Fennoscandian boreal forests, soil pH and N supply generally increase downhill as a result of water transport of base cations and N, respectively. Simultaneously, forest productivity increases, the understory changes from ericaceous dwarf shrubs to tall herbs; in the soil, fungi decrease whereas bacteria increase. The composition of the soil microbial community is mainly thought to be controlled by the pH and C-to-N ratio of the substrate. However, the latter also determines the N supply to plants, the plant community composition, and should also affect plant allocation of C below ground to roots and a major functional group of microbes, mycorrhizal fungi. We used phospholipid fatty acids (PLFAs) to analyze the potential importance of mycorrhizal fungi by comparing the microbial community composition in a tree-girdling experiment, where tree belowground C allocation was terminated, and in a long-term (34 years) N loading experiment, with the shifts across a natural pH and N supply gradient. Both tree girdling and N loading caused a decline of ca. 45% of the fungal biomarker PLFA 18:2ω6,9, suggesting a common mechanism, i.e., that N loading caused a decrease in the C supply to ectomycorrhizal fungi just as tree girdling did. The total abundance of bacterial PLFAs did not respond to tree girdling or to N loading, in which cases the pH (of the mor layer) did not change appreciably, but bacterial PLFAs increased considerably when pH increased across the natural gradient. Fungal biomass was high only in acid soil (pH < 4.1) with a high C-to-N ratio (>38). According to a principal component analysis, the soil C-to-N ratio was as good as predictor of microbial community structure as pH. Our study thus indicated the soil C-to-N ratio, and the response of trees to this ratio, as important factors that together with soil pH influence soil microbial community composition.  相似文献   
26.
Okadaic acid (OA) is a specific and potent protein phosphatase inhibitor and tumor promoter. The present study establishes the role of reactive oxygen species (ROS) and mitogen activated protein kinases in cell death induced by okadaic acid. The study showed that okadaic acid is cytotoxic at 10 nM with an IC50 of 100 nM in U-937 cells. The CVDE assay and mitochondrial dehydrogenase assay showed a time dependent cytotoxicity. The phase contrast visualization of the OA treated cells showed the apoptotic morphology and was confirmed with esterase staining for plasma membrane integrity. OA activated caspases-7, 9 and 3, PARP cleavage and induced nuclear damage in a time and dose dependent manner. Compromised mitochondrial membrane potential, release of cytochrome-c and apoptosis inducing factor confirms the involvement of mitochondria. A time dependent decrease in glutathione levels and a dose dependent increase in ROS with maximum at 30 min were observed. ROS scavenger-N-acetyl cysteine, mitochondrial stabilizer-cyclosporin-A, and broad spectrum caspase inhibitor Z-VAD-FMK inhibited the OA induced caspase-3 activation, DNA damage and cell death but caspase-8 inhibitor had no effect. OA activated p38 MAPK and JNK in a time dependent manner, but not ERK½. MAP kinase inhibitors SB203580, SP600125 and PD98059 confirm the role of p38 MAPK and JNK in OA induced caspase-3 activation and cell death. Over all, our results indicate that OA induces cell death by generation of ROS, and activation of p38 MAPK and JNK, and executed through mitochondrial mediated caspase pathway.  相似文献   
27.
We report the development and optimization of reagents for in-solution, hybridization-based capture of the mouse exome. By validating this approach in a multiple inbred strains and in novel mutant strains, we show that whole exome sequencing is a robust approach for discovery of putative mutations, irrespective of strain background. We found strong candidate mutations for the majority of mutant exomes sequenced, including new models of orofacial clefting, urogenital dysmorphology, kyphosis and autoimmune hepatitis.  相似文献   
28.
The death receptors FAS, TRAIL‐Rs and TNFR1 play critical roles in programmed cell death, particularly in the immune system. Upon ligation of death receptors, caspase‐8 is activated within the so‐called ‘Death Induced Signalling Complex’ (DISC) but the mechanisms that mediate and modulate the activation of caspase‐8 are still not fully understood. This is an important issue because caspase‐8 is essential for apoptosis induced by death receptors. In this issue of The EMBO Journal, Kranz and Boutros ( 2014 ) describe their findings from a whole genome siRNA screen for the identification of novel regulators of death receptor induced apoptosis signalling. They identified the atypical cadherin FAT1 as a negative regulator of TRAIL‐R‐mediated caspase‐8 activation and consequent induction of apoptosis, although it had no impact on NF‐κB activation. The authors also show that FAT1 depletion substantially increased TRAIL‐induced killing of glioblastoma‐derived cell lines, suggesting a potential novel approach for treatment of this highly aggressive cancer.  相似文献   
29.
Single and dual amino acid substitution variants were generated in the TCR CDRs of three TCRs that recognize tumor-associated Ags. Substitutions that enhance the reactivity of TCR gene-modified T cells to the cognate Ag complex were identified using a rapid RNA-based transfection system. The screening of a panel of variants of the 1G4 TCR, that recognizes a peptide corresponding to amino acid residues 157-165 of the human cancer testis Ag NY-ESO-1 (SLLMWITQC) in the context of the HLA-A*02 class I allele, resulted in the identification of single and dual CDR3alpha and CDR2beta amino acid substitutions that dramatically enhanced the specific recognition of NY-ESO-1(+)/HLA-A*02(+) tumor cell lines by TCR gene-modified CD4(+) T cells. Within this group of improved TCRs, a dual substitution in the 1G4 TCR CDR3alpha chain was identified that enhanced Ag-specific reactivity in gene-modified CD4(+) and CD8(+) T cells. Separate experiments on two distinct TCRs that recognize the MART-1 27-35 (AAGIGILTV) peptide/HLA-A*02 Ag complex characterized single amino acid substitutions in both TCRs that enhanced CD4(+) T cell Ag-specific reactivity. These results indicate that simple TCR substitution variants that enhance T cell function can be identified by rapid transfection and assay techniques, providing the means for generating potent Ag complex-specific TCR genes for use in the study of T cell interactions and in T cell adoptive immunotherapy.  相似文献   
30.
Wetlands are important providers of ecosystem services and key regulators of climate change. They positively contribute to global warming through their greenhouse gas emissions, and negatively through the accumulation of organic material in histosols, particularly in peatlands. Our understanding of wetlands’ services is currently constrained by limited knowledge on their distribution, extent, volume, interannual flood variability and disturbance levels. We present an expert system approach to estimate wetland and peatland areas, depths and volumes, which relies on three biophysical indices related to wetland and peat formation: (1) long‐term water supply exceeding atmospheric water demand; (2) annually or seasonally water‐logged soils; and (3) a geomorphological position where water is supplied and retained. Tropical and subtropical wetlands estimates reach 4.7 million km2 (Mkm2). In line with current understanding, the American continent is the major contributor (45%), and Brazil, with its Amazonian interfluvial region, contains the largest tropical wetland area (800,720 km2). Our model suggests, however, unprecedented extents and volumes of peatland in the tropics (1.7 Mkm2 and 7,268 (6,076–7,368) km3), which more than threefold current estimates. Unlike current understanding, our estimates suggest that South America and not Asia contributes the most to tropical peatland area and volume (ca. 44% for both) partly related to some yet unaccounted extended deep deposits but mainly to extended but shallow peat in the Amazon Basin. Brazil leads the peatland area and volume contribution. Asia hosts 38% of both tropical peat area and volume with Indonesia as the main regional contributor and still the holder of the deepest and most extended peat areas in the tropics. Africa hosts more peat than previously reported but climatic and topographic contexts leave it as the least peat‐forming continent. Our results suggest large biases in our current understanding of the distribution, area and volumes of tropical peat and their continental contributions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号