首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1689篇
  免费   90篇
  国内免费   1篇
  1780篇
  2024年   6篇
  2023年   23篇
  2022年   49篇
  2021年   82篇
  2020年   45篇
  2019年   58篇
  2018年   63篇
  2017年   35篇
  2016年   74篇
  2015年   85篇
  2014年   88篇
  2013年   128篇
  2012年   129篇
  2011年   133篇
  2010年   73篇
  2009年   59篇
  2008年   78篇
  2007年   82篇
  2006年   65篇
  2005年   64篇
  2004年   66篇
  2003年   53篇
  2002年   48篇
  2001年   13篇
  2000年   8篇
  1999年   15篇
  1998年   12篇
  1996年   4篇
  1995年   5篇
  1994年   10篇
  1993年   7篇
  1992年   4篇
  1991年   9篇
  1990年   12篇
  1989年   4篇
  1988年   5篇
  1987年   5篇
  1986年   5篇
  1985年   6篇
  1984年   4篇
  1982年   4篇
  1981年   5篇
  1979年   7篇
  1978年   7篇
  1976年   4篇
  1975年   6篇
  1974年   4篇
  1972年   3篇
  1971年   4篇
  1968年   3篇
排序方式: 共有1780条查询结果,搜索用时 15 毫秒
41.
Isolated frog (RanaPipiens) retinas were labeled in the dark with either [32P]PO4-orthophosphate or myo-[2-3H]inositol for 2.5–4 hrs. After washing the retinas with cold buffer, they were exposed to brief flashes of light (5 secs or 15 secs) and their rod outer segments isolated. Upon separation of labeled phospholipids, a specific decrease in label in phosphatidylinositol 4,5-bisphosphate was observed, whereas there was no significant effect on the labeling of phosphatidylinositol 4-phosphate, phosphatidylinositol, or phosphatidic acid. These results are indicative of a light-activated phosphatidylinositol 4,5-bisphosphate-specific phospholipase C in frog rod outer segments.  相似文献   
42.
43.

Background

It is now recognized that enzymatic or chemical side-reactions can convert normal metabolites to useless or toxic ones and that a suite of enzymes exists to mitigate such metabolite damage. Examples are the reactive imine/enamine intermediates produced by threonine dehydratase, which damage the pyridoxal 5''-phosphate cofactor of various enzymes causing inactivation. This damage is pre-empted by RidA proteins, which hydrolyze the imines before they do harm. RidA proteins belong to the YjgF/YER057c/UK114 family (here renamed the Rid family). Most other members of this diverse and ubiquitous family lack defined functions.

Results

Phylogenetic analysis divided the Rid family into a widely distributed, apparently archetypal RidA subfamily and seven other subfamilies (Rid1 to Rid7) that are largely confined to bacteria and often co-occur in the same organism with RidA and each other. The Rid1 to Rid3 subfamilies, but not the Rid4 to Rid7 subfamilies, have a conserved arginine residue that, in RidA proteins, is essential for imine-hydrolyzing activity. Analysis of the chromosomal context of bacterial RidA genes revealed clustering with genes for threonine dehydratase and other pyridoxal 5''-phosphate-dependent enzymes, which fits with the known RidA imine hydrolase activity. Clustering was also evident between Rid family genes and genes specifying FAD-dependent amine oxidases or enzymes of carbamoyl phosphate metabolism. Biochemical assays showed that Salmonella enterica RidA and Rid2, but not Rid7, can hydrolyze imines generated by amino acid oxidase. Genetic tests indicated that carbamoyl phosphate overproduction is toxic to S. enterica cells lacking RidA, and metabolomic profiling of Rid knockout strains showed ten-fold accumulation of the carbamoyl phosphate-related metabolite dihydroorotate.

Conclusions

Like the archetypal RidA subfamily, the Rid2, and probably the Rid1 and Rid3 subfamilies, have imine-hydrolyzing activity and can pre-empt damage from imines formed by amine oxidases as well as by pyridoxal 5''-phosphate enzymes. The RidA subfamily has an additional damage pre-emption role in carbamoyl phosphate metabolism that has yet to be biochemically defined. Finally, the Rid4 to Rid7 subfamilies appear not to hydrolyze imines and thus remain mysterious.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1584-3) contains supplementary material, which is available to authorized users.  相似文献   
44.
The human epidermal growth factor 2 (HER2) gene undergoes various mutations that could alter its activity or respond to the antibody therapies. Cetuximab, a known anti-EGFR monoclonal antibody (mAB), is widely administered in metastatic colorectal cancer (mCRC) cases. Here we identified mCRC patients who did not respond to cetuximab (500 mg/m2, q2w) after fluoropyrimidine/oxaliplatin regimen failure. Tumor samples were examined with immunohistochemistry for protein distribution, polymerase chain reaction (PCR) sequencing for mutation detection and real-time PCR for mRNA expression pattern analysis between cetuximab sensitive and resistance patients. The conformational differences of normal and mutated protein structures were predicted by bioinformatics analysis. The 5-year survival rates of target groups were estimated using the Kaplan–Meier method. Immunohistochemistry showed that all cases had high level of HER2 protein. No K-Ras or B-Raf mutation was observed among the study population; however, cetuximab resistance patients harbored a somatic mutation R784G at the exon 20 region of HER2 coding sequence. According to bioinformatics analysis, this mutation caused a notable misfold in protein conformation. Meanwhile, survival analysis showed R784G mutated mCRC patients had shortened survival rate compared with the mCRC cases with wild-type HER2. Collectively, these data report a new mechanism of resistance to cetuximab and might be applicable in modifying new therapeutic strategies for HER2 involved cancers.  相似文献   
45.
The influence of age and sex on the bioaccumulation of heavy metals in Apodemus sylvaticus was studied in Merja Zerga lagoon in northern Morocco. Five trace metal elements (Zn, Pb, Cr, Cu and Fe) were quantitatively analyzed by Varian AA 240 atomic absorption spectroscopy with graphite furnace in three organs (Liver, Kidney and Heart) from animals of different age and sex. The maximum metal level of the analyzed samples was recorded in adults and was limited to 46.62 μg/g for Pb and 35.1 μg/g for Cu, while it reached 22.69 μg/g, 7.59 μg/g and 6.78 μg/g for Cr, Zn and Fe, respectively. Highly significant differences were found for bioaccumulation of heavy metals according to animal ages and no significant differences were observed between the two sexes among the studied animals. Our results revealed also the existence of a strong correlation (r > 0.65) between the majority of biometric parameters and the trace element concentrations. In general, we found that age is a critical factor in estimating the level of heavy metal pollution. Other characteristics such as habitat, feeding habits and anti-predator behavior of the species need to be studied.  相似文献   
46.
Aim of work: To assess the impact of Cytochrome P450 3A5 (CYP3A5) and multidrug resistance-1 gene (MDR-1) single nucleotide polymorphisms on the dose and blood level of tacrolimus among liver transplanted patients.

Patients and methods: We enrolled a prospective study of 41 liver transplanted patients. Dose-adjusted trough blood concentration (C/D ratio) was calculated. Polymerase chain reaction-restriction fragment length polymorphism followed by sequencing was done for genotyping of CYP3A5*3 (6986A?>?G).

Results: At 1 week, 1 and 3 months C/D ratio were significantly lower in CYP3A5 expressers *1/*1 patients compared to non-expressers *3/*3.

Conclusion: CYP3A5 (6986A?>?G) genotype, rather than MDR-1 (2677G?>?A/T) variant, has an impact on tacrolimus pharmacokinetics.  相似文献   
47.
Single and dual amino acid substitution variants were generated in the TCR CDRs of three TCRs that recognize tumor-associated Ags. Substitutions that enhance the reactivity of TCR gene-modified T cells to the cognate Ag complex were identified using a rapid RNA-based transfection system. The screening of a panel of variants of the 1G4 TCR, that recognizes a peptide corresponding to amino acid residues 157-165 of the human cancer testis Ag NY-ESO-1 (SLLMWITQC) in the context of the HLA-A*02 class I allele, resulted in the identification of single and dual CDR3alpha and CDR2beta amino acid substitutions that dramatically enhanced the specific recognition of NY-ESO-1(+)/HLA-A*02(+) tumor cell lines by TCR gene-modified CD4(+) T cells. Within this group of improved TCRs, a dual substitution in the 1G4 TCR CDR3alpha chain was identified that enhanced Ag-specific reactivity in gene-modified CD4(+) and CD8(+) T cells. Separate experiments on two distinct TCRs that recognize the MART-1 27-35 (AAGIGILTV) peptide/HLA-A*02 Ag complex characterized single amino acid substitutions in both TCRs that enhanced CD4(+) T cell Ag-specific reactivity. These results indicate that simple TCR substitution variants that enhance T cell function can be identified by rapid transfection and assay techniques, providing the means for generating potent Ag complex-specific TCR genes for use in the study of T cell interactions and in T cell adoptive immunotherapy.  相似文献   
48.
Secretory polymorphic serine/threonine kinases control pathogenesis of Toxoplasma gondii in the mouse. Genetic studies show that the pseudokinase ROP5 is essential for acute virulence, but do not reveal its mechanism of action. Here we demonstrate that ROP5 controls virulence by blocking IFN-γ mediated clearance in activated macrophages. ROP5 was required for the catalytic activity of the active S/T kinase ROP18, which phosphorylates host immunity related GTPases (IRGs) and protects the parasite from clearance. ROP5 directly regulated activity of ROP18 in vitro, and both proteins were necessary to avoid IRG recruitment and clearance in macrophages. Clearance of both the Δrop5 and Δrop18 mutants was reversed in macrophages lacking Irgm3, which is required for IRG function, and the virulence defect was fully restored in Irgm3−/− mice. Our findings establish that the pseudokinase ROP5 controls the activity of ROP18, thereby blocking IRG mediated clearance in macrophages. Additionally, ROP5 has other functions that are also Irgm3 and IFN-γ dependent, indicting it plays a general role in governing virulence factors that block immunity.  相似文献   
49.
Cholangiocacinoma (CC) is a cancer disease with rising incidence. Notch signaling has been shown to be deregulated in many cancers. However, the role of this signaling pathway in the carcinogenesis of CC is still not fully explored. In this study, we investigated the effects of Notch inhibition by γ-secretase inhibitor IX (GSI IX) in cultured human CC cell lines and we established a transgenic mouse model with liver specific expression of the intracellular domain of Notch (Notch-ICD) and inactivation of tumor suppressor p53. GSI IX treatment effectively impaired cell proliferation, migration, invasion, epithelial to mesenchymal transition and growth of softagar colonies. In vivo overexpression of Notch-ICD together with an inactivation of p53 significantly increased tumor burden and showed CC characteristics. Conclusion: Our study highlights the importance of Notch signaling in the tumorigenesis of CC and demonstrates that additional inactivation of p53 in vivo.  相似文献   
50.
Molecular Biology Reports - Arsenic is a potent and toxic heavy metal found in the environment that causes health problems, including liver disease, in humans and animals. Chlorogenic acid (CA) is...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号