首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   919篇
  免费   73篇
  992篇
  2024年   3篇
  2023年   11篇
  2022年   20篇
  2021年   31篇
  2020年   18篇
  2019年   26篇
  2018年   32篇
  2017年   10篇
  2016年   34篇
  2015年   64篇
  2014年   55篇
  2013年   64篇
  2012年   73篇
  2011年   69篇
  2010年   45篇
  2009年   42篇
  2008年   61篇
  2007年   60篇
  2006年   57篇
  2005年   39篇
  2004年   40篇
  2003年   36篇
  2002年   27篇
  2001年   5篇
  2000年   3篇
  1999年   5篇
  1998年   3篇
  1997年   4篇
  1996年   3篇
  1995年   4篇
  1994年   5篇
  1993年   4篇
  1992年   3篇
  1991年   5篇
  1990年   2篇
  1986年   6篇
  1985年   3篇
  1984年   1篇
  1983年   3篇
  1982年   1篇
  1981年   3篇
  1977年   1篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1969年   1篇
  1968年   1篇
  1966年   2篇
  1961年   1篇
排序方式: 共有992条查询结果,搜索用时 15 毫秒
21.
22.
23.
24.
Environmental conditions play a major role in shaping the spatial distributions of pathogens, which in turn can drive local adaptation and divergence in host genetic diversity. Haemosporidians, such as Plasmodium (malaria), are a strong selective force, impacting survival and fitness of hosts, with geographic distributions largely determined by habitat suitability for their insect vectors. Here, we have tested whether patterns of fine‐scale local adaptation to malaria are replicated across discrete, ecologically differing island populations of Berthelot's pipits Anthus berthelotii. We sequenced TLR4, an innate immunity gene that is potentially under positive selection in Berthelot's pipits, and two SNPs previously identified as being associated with malaria infection in a genome‐wide association study (GWAS) in Berthelot's pipits in the Canary Islands. We determined the environmental predictors of malaria infection, using these to estimate variation in malaria risk on Porto Santo, and found some congruence with previously identified environmental risk factors on Tenerife. We also found a negative association between malaria infection and a TLR4 variant in Tenerife. In contrast, one of the GWAS SNPs showed an association with malaria risk in Porto Santo, but in the opposite direction to that found in the Canary Islands GWAS. Together, these findings suggest that disease‐driven local adaptation may be an important factor in shaping variation among island populations.  相似文献   
25.
26.

Background

Because lymphatic filariasis (LF) elimination efforts are hampered by a dearth of economic information about the cost of mass drug administration (MDA) programs (using either albendazole with diethylcarbamazine [DEC] or albendazole with ivermectin), a multicenter study was undertaken to determine the costs of MDA programs to interrupt transmission of infection with LF. Such results are particularly important because LF programs have the necessary diagnostic and treatment tools to eliminate the disease as a public health problem globally, and already by 2006, the Global Programme to Eliminate LF had initiated treatment programs covering over 400 million of the 1.3 billion people at risk.

Methodology/Principal Findings

To obtain annual costs to carry out the MDA strategy, researchers from seven countries developed and followed a common cost analysis protocol designed to estimate 1) the total annual cost of the LF program, 2) the average cost per person treated, and 3) the relative contributions of the endemic countries and the external partners. Costs per person treated ranged from $0.06 to $2.23. Principal reasons for the variation were 1) the age (newness) of the MDA program, 2) the use of volunteers, and 3) the size of the population treated. Substantial contributions by governments were documented – generally 60%–90% of program operation costs, excluding costs of donated medications.

Conclusions/Significance

MDA for LF elimination is comparatively inexpensive in relation to most other public health programs. Governments and communities make the predominant financial contributions to actual MDA implementation, not counting the cost of the drugs themselves. The results highlight the impact of the use of volunteers on program costs and provide specific cost data for 7 different countries that can be used as a basis both for modifying current programs and for developing new ones.  相似文献   
27.
The global connectivities in very large protein similarity networks contain traces of evolution among the proteins for detecting protein remote evolutionary relations or structural similarities. To investigate how well a protein network captures the evolutionary information, a key limitation is the intensive computation of pairwise sequence similarities needed to construct very large protein networks. In this article, we introduce label propagation on low-rank kernel approximation (LP-LOKA) for searching massively large protein networks. LP-LOKA propagates initial protein similarities in a low-rank graph by Nyström approximation without computing all pairwise similarities. With scalable parallel implementations based on distributed-memory using message-passing interface and Apache-Hadoop/Spark on cloud, LP-LOKA can search protein networks with one million proteins or more. In the experiments on Swiss-Prot/ADDA/CASP data, LP-LOKA significantly improved protein ranking over the widely used HMM-HMM or profile-sequence alignment methods utilizing large protein networks. It was observed that the larger the protein similarity network, the better the performance, especially on relatively small protein superfamilies and folds. The results suggest that computing massively large protein network is necessary to meet the growing need of annotating proteins from newly sequenced species and LP-LOKA is both scalable and accurate for searching massively large protein networks.  相似文献   
28.
BackgroundTrachoma is targeted for global elimination as a public health problem by 2030. Understanding individual, household, or community-associated factors that may lead to continued transmission or risk of recrudescence in areas where elimination has previously been achieved, is essential in reaching and maintaining trachoma elimination. We aimed to identify climatic, demographic, environmental, infrastructural, and socioeconomic factors associated in the literature with trachoma at community-level and assess the strength of their association with trachoma. Because of the potential power of geospatial analysis to delineate the variables most strongly associated with differences in trachoma prevalence, we then looked in detail at geospatial analysis methods used in previous trachoma studies.MethodsWe conducted a systematic literature review using five databases: Medline, Embase, Global Health, Dissertations & Theses Global, and Web of Science, including publications from January 1950 to January 2021. The review protocol was prospectively registered with PROSPERO (CRD42020191718).ResultsOf 35 eligible studies, 29 included 59 different trachoma-associated factors, with eight studies also including spatial analysis methods. Six studies included spatial analysis methods only. Higher trachomatous inflammation—follicular (TF) prevalence was associated with areas that: had lower mean annual precipitation, lower mean annual temperatures, and lower altitudes; were rural, were less accessible, had fewer medical services, had fewer schools; and had lower access to water and sanitation. Higher trachomatous trichiasis (TT) prevalence was associated with higher aridity index and increased distance to stable nightlights. Of the 14 studies that included spatial methods, 11 used exploratory spatial data analysis methods, three used interpolation methods, and seven used spatial modelling methods.ConclusionResearchers and decision-makers should consider the inclusion and potential influence of trachoma-associated factors as part of both research activities and programmatic priorities. The use of geospatial methods in trachoma studies remains limited but offers the potential to define disease hotspots and areas of potential recrudescence to inform local, national, and global programmatic needs.  相似文献   
29.
Testing models of selection and demography in Drosophila simulans   总被引:8,自引:0,他引:8  
Wall JD  Andolfatto P  Przeworski M 《Genetics》2002,162(1):203-216
We analyze patterns of nucleotide variability at 15 X-linked loci and 14 autosomal loci from a North American population of Drosophila simulans. We show that there is significantly more linkage disequilibrium on the X chromosome than on chromosome arm 3R and much more linkage disequilibrium on both chromosomes than expected from estimates of recombination rates, mutation rates, and levels of diversity. To explore what types of evolutionary models might explain this observation, we examine a model of recurrent, nonoverlapping selective sweeps and a model of a recent drastic bottleneck (e.g., founder event) in the demographic history of North American populations of D. simulans. The simple sweep model is not consistent with the observed patterns of linkage disequilibrium nor with the observed frequencies of segregating mutations. Under a restricted range of parameter values, a simple bottleneck model is consistent with multiple facets of the data. While our results do not exclude some influence of selection on X vs. autosome variability levels, they suggest that demography alone may account for patterns of linkage disequilibrium and the frequency spectrum of segregating mutations in this population of D. simulans.  相似文献   
30.
Understanding why some species have more genetic diversity than others is central to the study of ecology and evolution, and carries potentially important implications for conservation biology. Yet not only does this question remain unresolved, it has largely fallen into disregard. With the rapid decrease in sequencing costs, we argue that it is time to revive it.What evolutionary forces maintain genetic diversity in natural populations? How do diversity levels relate to census population sizes (Box 1)? Do low levels of diversity limit adaptation to novel selective pressures? Efforts to address such questions spurred the rise of modern population genetics and contributed to the development of the neutral theory of molecular evolution—the null hypothesis for much of evolutionary genetics and comparative genomics [1][3]. Yet these questions remain wide open and, for close to two decades, have been neglected [4]. Most notably, little progress has been made to resolve a riddle first pointed out 40 years ago on the basis of allozyme data: the mysteriously narrow range of genetic diversity levels seen across taxa that vary markedly in their census population sizes [5]. This gap in our understanding is glaring, and may hamper efforts at conservation (e.g., [6]).

Box 1. Glossary

Allozymes: Allelic variants of a protein, often detected by differences in gel electrophoresis. Balancing selection: Natural selection that maintains variation longer than expected from genetic drift alone. Census population size: The actual number of individuals in a population; methods to estimate this number vary depending on the species and may involve aerial, transect, or capture/recapture counts. Diversity levels: The measure used here is the probability that a pair of randomly chosen haplotypes differ at a site. Effective population size: The size of an idealized population with some of the same properties as the actual one, e.g., the same rate of genetic drift. Under simplifying assumptions, notably a constant population size and no population structure, this parameter can be estimated from observed diversity levels, given an independent estimate of the mutation rate. Fluctuating selection: When the fitness of an allele changes over time or over space. Genetic draft: A dramatic loss of genetic variation due to strong, frequent selection at nearby sites [8]. Genetic drift: In a finite population, the loss of genetic variation due to the random sampling of gametes at each generation. Local adaptation: Adaptation to a particular environment that is not shared by the entire species. Nearly neutral theory of molecular evolution: A modification of the neutral theory, in which many mutations are slightly deleterious, rather than strictly neutral or strongly deleterious [75]. Neutral theory of molecular evolution: The theory that most genetic variation seen within populations and between species is neutral, and most mutations are either neutral or strongly deleterious [11]. Panmixia: Random mating among individuals, and hence no population structure. Phylogenetically independent contrasts: A statistical method that allows one to compare properties of species controlling for their evolutionary relationship. Purifying (negative) selection: Natural selection that favors the common, fitter allele against rare, deleterious alleles. Selection at linked sites: Selection at sites linked to the locus under consideration, which can affect the population dynamics of alleles at that locus. Silent sites: A general term for synonymous, intronic, and intergenic sites—all sites at which mutations do not change an amino acid. Variation-reducing selection: Selection that leads to a decrease in diversity at linked sites.With the recent technological revolution in sequencing, the data needed to address questions about the determinants of genetic diversity levels are now within reach. As a first step towards reviving these questions, we compile existing estimates of nuclear sequence diversity. These data are highly preliminary, but they underscore how little is known about the narrow span of diversity levels across species or why some species maintain more genetic variation than others [5],[7],[8], and they offer a glimpse of trends that may be worth pursuing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号