全文获取类型
收费全文 | 89篇 |
免费 | 3篇 |
专业分类
92篇 |
出版年
2021年 | 1篇 |
2019年 | 2篇 |
2018年 | 1篇 |
2017年 | 2篇 |
2015年 | 8篇 |
2014年 | 4篇 |
2013年 | 5篇 |
2012年 | 9篇 |
2011年 | 8篇 |
2010年 | 2篇 |
2009年 | 1篇 |
2008年 | 3篇 |
2007年 | 5篇 |
2006年 | 5篇 |
2005年 | 3篇 |
2004年 | 4篇 |
2003年 | 4篇 |
2002年 | 4篇 |
2001年 | 1篇 |
2000年 | 3篇 |
1999年 | 1篇 |
1998年 | 1篇 |
1997年 | 1篇 |
1994年 | 1篇 |
1991年 | 1篇 |
1990年 | 1篇 |
1989年 | 1篇 |
1983年 | 1篇 |
1982年 | 1篇 |
1980年 | 1篇 |
1979年 | 1篇 |
1978年 | 1篇 |
1976年 | 1篇 |
1952年 | 2篇 |
1951年 | 1篇 |
1950年 | 1篇 |
排序方式: 共有92条查询结果,搜索用时 15 毫秒
31.
Dr Yuri N. Korystov Maksim O. Emel'yanov Antonina F. Korystova Mariya KH. Levitman Vera V. Shaposhnikova 《Free radical research》2013,47(2):149-155
A method for the determination of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in macroscopic sections of vessels has been developed on the basis of the dichlorofluorescein (DCF) assay. DCF was measured by fluorescence in extracts of vessels. The main artifact of the method is the oxidation of dichlorodihydrofluorescein (DCFH2) which is released from vessels together with DCF during the extraction procedure. This problem was resolved by decreasing pH during the extraction. The optimal conditions and the time for aorta incubation with DCFH2-DA and for the extraction of DCF from aorta have been determined. The ROS/RNS production in different aorta segments and the dependence of ROS/RNS production on rat age have been studied. It was shown that thoracic aorta sections produced the same amounts of ROS/RNS and the intermediate between the thoracic and the abdominal aorta part produced ROS and RNS by 14% more than the thoracic aorta. It was found that ROS/RNS production in aorta increases with rat age: the doubling time of ROS/RNS production rate is 113 days from birth. 相似文献
32.
Jungheim ES Louden ED Chi MM Frolova AI Riley JK Moley KH 《Biology of reproduction》2011,85(4):678-683
Free fatty acids (FFAs) are energy substrates for many cell types, but in excess, some FFAs can accumulate in nonadipose cells, inducing apoptosis. Also known as lipotoxicity, this phenomenon may play a role in the development of obesity-related disease. Obesity is common among reproductive age women and is associated with adverse pregnancy and fetal outcomes; however, little is known about the effects of excess FFAs on embryos and subsequent fetal development. To address this knowledge gap, murine blastocysts were cultured in excess palmitic acid (PA), the most abundant saturated FFA in human serum, and ovarian follicular fluid. Targets susceptible to aberrations in maternal physiology, including embryonic IGF1 receptor (IGF1R) expression, glutamic pyruvate transaminase (GPT2) activity, and nuclei count, were measured. PA-exposed blastocysts demonstrated altered IGF1R expression, increased GPT2 activity, and decreased nuclei count. Trophoblast stem cells derived from preimplantation embryos were also cultured in PA. Cells exposed to increasing doses of PA demonstrated increased apoptosis and decreased proliferation. To demonstrate long-term effects of brief PA exposure, blastocysts cultured for 30 h in PA were transferred into foster mice, and pregnancies followed through Embryonic Day (ED)14.5 or delivery. Fetuses resulting from PA-exposed blastocysts were smaller than controls at ED14.5. Delivered pups were also smaller but demonstrated catch-up growth and ultimately surpassed control pups in weight. Altogether, our data suggest brief PA exposure results in altered embryonic metabolism and growth, with lasting adverse effects on offspring, providing further insight into the pathophysiology of maternal obesity. 相似文献
33.
34.
35.
We employed a genetic approach to study protein glycosylation in the
procyclic form of the parasite Trypanosoma brucei. Two different mutant
parasites, ConA 1-1 and ConA 4-1, were isolated from mutagenized cultures
by selecting cells which resisted killing or agglutination by concanavalin
A. Both mutant cells show reduced concanavalin A binding. However, the
mutants have different phenotypes, as indicated by the fact that ConA 1-1
binds to wheat germ agglutinin but ConA 4-1 and wild type do not. A blot
probed with concanavalin A revealed that many proteins in both mutants lost
the ability to bind this lectin, and the blots resembled one of wild type
membrane proteins treated with PNGase F. This finding suggested that the
mutants had altered asparagine- linked glycosylation. This conclusion was
confirmed by studies on a flagellar protein (Fla1) and procyclic acidic
repetitive protein (PARP). Structural analysis indicated that the N- glycan
of wild type PARP is exclusively Man5GlcNAc2 whereas that in both mutants
is predominantly a hybrid type with a terminal N- acetyllactosamine. The
occupancy of the PARP glycosylation site in ConA 4-1 was much lower than
that in ConA 1-1. These mutants will be useful for studying trypanosome
glycosylation mechanisms and function.
相似文献
36.
K H Moley W K Vaughn A H DeCherney M P Diamond 《Journal of reproduction and fertility》1991,93(2):325-332
Fifteen spontaneously diabetic, non-obese mice (NOD strain), 17 non-diabetic NOD mice (in which diabetes had not yet developed) and 9 diabetic NOD mice were treated with insulin. All animals were superovulated with 5 iu of pregnant mares' serum gonadotrophin followed 48 h later by 5 iu human chorionic gonadotrophin (hCG) and mated overnight with NOD males of proven fertility. To assess in-vitro and early in-vivo development, 23 NOD mice were killed 72 h after hCG treatment. Embryos were recovered from oviduct flushings and cultured in Ham's F-10 medium with 0.1% bovine serum albumin at 37 degrees C in an atmosphere of 5% O2, 5% CO2, and 90% N2. Development was assessed at intervals of 24 h for 72 h. Compared with embryos from non-diabetic NOD mice (n = 81), embryos from diabetic NOD mice (n = 68) demonstrated marked impairment in growth assessed by distribution of developmental stages at each observation period (24, 48, 72 h, all P less than 0.001) and by overall rates of progression of developmental stages (P less than 0.01). In diabetic NOD mice treated with insulin, embryo development (n = 7) was not significantly different from that of embryos from non-diabetic NOD mice (n = 81), but was significantly faster than in embryos from diabetic NOD mice not treated with insulin (n = 68) (P less than 0.001, for all periods, overall rate P less than 0.01). To assess late in-vivo growth, 18 NOD mice were killed 120 h after hCG.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
37.
Type 1 diabetes is an autoimmune disorder characterized by a lack of insulin production by the beta cells of the pancreas. This lack of insulin causes a variety of systemic effects on whole-body metabolism. Poorly managed type 1 diabetes can lead to cardiovascular disease, diabetic neuropathy, and diabetic retinopathy. Increasingly, even well-managed type 1 diabetic patients show damage to peripheral organs related to complications from the disease. The central role of insulin in energy homeostasis also renders it an important signaling factor in the reproductive tract. type 1 diabetes has now been demonstrated to cause defects in sperm and testes. The aim of this review is to present the known effects of insulin's role in the function of the male reproductive tract. These effects might be mediated through hormonal alterations in the hypothalamic pituitary gonadal axis or through the direct interaction of insulin on the testes and sperm cells. Although fertility complications also occur in type 2 diabetic males, this review will focus on the defects specifically linked with the lack of insulin seen in type 1 diabetes. 相似文献
38.
KH Richau RL Kudahettige P Pujic NP Kudahettige A Sellstedt 《Journal of biosciences》2013,38(4):703-712
The actinorhizal bacterium Frankia expresses nitrogenase and can therefore convert molecular nitrogen into ammonia and the by-product hydrogen. However, nitrogenase is inhibited by oxygen. Consequently, Frankia and its actinorhizal hosts have developed various mechanisms for excluding oxygen from their nitrogen-containing compartments. These include the expression of oxygen-scavenging uptake hydrogenases, the formation of hopanoid-rich vesicles, enclosed by multi-layered hopanoid structures, the lignification of hyphal cell walls, and the production of haemoglobins in the symbiotic nodule. In this work, we analysed the expression and structure of the so-called uptake hydrogenase (Hup), which catalyses the in vivo dissociation of hydrogen to recycle the energy locked up in this ‘waste’ product. Two uptake hydrogenase syntons have been identified in Frankia: synton 1 is expressed under free-living conditions while synton 2 is expressed during symbiosis. We used qPCR to determine synton 1 hup gene expression in two Frankia strains under aerobic and anaerobic conditions. We also predicted the 3D structures of the Hup protein subunits based on multiple sequence alignments and remote homology modelling. Finally, we performed BLAST searches of genome and protein databases to identify genes that may contribute to the protection of nitrogenase against oxygen in the two Frankia strains. Our results show that in Frankia strain ACN14a, the expression patterns of the large (HupL1) and small (HupS1) uptake hydrogenase subunits depend on the abundance of oxygen in the external environment. Structural models of the membrane-bound hydrogenase subunits of ACN14a showed that both subunits resemble the structures of known [NiFe] hydrogenases (Volbeda et al. 1995), but contain fewer cysteine residues than the uptake hydrogenase of the Frankia DC12 and Eu1c strains. Moreover, we show that all of the investigated Frankia strains have two squalene hopane cyclase genes (shc1 and shc2). The only exceptions were CcI3 and the symbiont of Datisca glomerata, which possess shc1 but not shc2. Four truncated haemoglobin genes were identified in Frankia ACN14a and Eu1f, three in CcI3, two in EANpec1 and one in the Datisca glomerata symbiont (Dg). 相似文献
39.
Decreased glucose transporter expression triggers BAX-dependent apoptosis in the murine blastocyst 总被引:9,自引:0,他引:9
Chi MM Pingsterhaus J Carayannopoulos M Moley KH 《The Journal of biological chemistry》2000,275(51):40252-40257
We report that a decrease in facilitative glucose transporter (GLUT1) expression and reduced glucose transport trigger apoptosis in the murine blastocyst. Inhibition of GLUT1 expression either by high glucose conditions or with antisense oligodeoxynucleotides significantly lowers protein expression and function of GLUT1 and as a result induces a high rate of apoptosis at the blastocyst stage. Similar to wild-type mice, embryos from streptozotocin-induced diabetic Bax -/- mice experienced a significant decrease in glucose transport compared with embryos from non-diabetic Bax -/- mice. However, despite this decrease, these blastocysts demonstrate significantly fewer apoptotic nuclei as compared with blastocysts from hyperglycemic wild-type mice. This decrease in preimplantation apoptosis correlates with a decrease in resorptions and malformations among the infants of the hyperglycemic Bax -/- mice versus the Bax +/+ and +/- mice. These findings suggest that hyperglycemia by decreasing glucose transport acts as a cell death signal to trigger a BAX-dependent apoptotic cascade in the murine blastocyst. This work also supports the hypothesis that increased apoptosis at a blastocyst stage because of maternal hyperglycemia may result in loss of key progenitor cells and manifest as a resorption or malformation, two adverse pregnancy outcomes more common in diabetic women. 相似文献
40.
Han Z Vassena R Chi MM Potireddy S Sutovsky M Moley KH Sutovsky P Latham KE 《American journal of physiology. Endocrinology and metabolism》2008,295(4):E798-E809
Cloned mouse embryos display a marked preference for glucose-containing culture medium, with enhanced development to the blastocyst stage in glucose-containing medium attributable mainly to an early beneficial effect during the first cell cycle. This early beneficial effect of glucose is not displayed by parthenogenetic, fertilized, or tetraploid nuclear transfer control embryos, indicating that it is specific to diploid clones. Precocious localization of the glucose transporter SLC2A1 to the cell surface, as well as increased expression of glucose transporters and increased uptake of glucose at the one- and two-cell stages, is also seen in cloned embryos. To examine the role of glucose in early cloned embryo development, we examined glucose metabolism and associated metabolites, as well as mitochondrial ultrastructure, distribution, and number. Clones prepared with cumulus cell nuclei displayed significantly enhanced glucose metabolism at the two-cell stage relative to parthenogenetic controls. Despite the increase in metabolism, ATP content was reduced in clones relative to parthenotes and fertilized controls. Clones at both stages displayed elevated concentrations of glycogen compared with parthenogenetic controls. There was no difference in the number of mitochondria, but clone mitochondria displayed ultrastructural alterations. Interestingly, glucose availability positively affected mitochondrial structure and localization. We conclude that cloned embryos may be severely compromised in terms of ATP-dependent processes during the first two cell cycles and that glucose may exert its early beneficial effects via positive effects on the mitochondria. 相似文献