首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   56篇
  免费   3篇
  2021年   1篇
  2017年   1篇
  2014年   3篇
  2013年   1篇
  2012年   1篇
  2011年   3篇
  2010年   4篇
  2007年   3篇
  2006年   4篇
  2005年   2篇
  2004年   3篇
  2003年   2篇
  2002年   3篇
  2001年   3篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1995年   1篇
  1990年   4篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1979年   1篇
  1976年   1篇
  1975年   1篇
排序方式: 共有59条查询结果,搜索用时 15 毫秒
41.
The antimicrobial effect of the lactoperoxidase (LPO) system (enzyme with the thiocyanate ion and hydrogen peroxide) on Streptococcus mutans NCTC 10449 (serotype c) was significantly enhanced when the system was combined with secretory IgA. Similar enhancement was observed with LPO-myeloma IgA1 or IgA2 combinations. This enhancement of the antimicrobial efficiency was not dependent on the presence of specific antibodies to S. mutans in the IgA preparation, but seemed to require binding between LPO and immunoglobulin. However, neither human polyclonal nor myeloma IgG or IgM nor rabbit IgG enhanced the antibacterial activity of the LPO system. None of the immunoglobulins, when added alone, produced antimicrobial effects. LPO was shown to bind to colostral secretory IgA, myeloma IgA1, IgA2, and to a lesser degree to monoclonal and polyclonal IgG and monoclonal IgM. This binding had a stabilizing effect on the enzyme activity. Our results suggest that IgA significantly enhances the antibacterial efficiency of one of the innate immune factors--the LPO system.  相似文献   
42.
Structural basis for UBA-mediated dimerization of c-Cbl ubiquitin ligase   总被引:1,自引:0,他引:1  
Ligand-induced down-regulation by the ubiquitin-protein ligases, c-Cbl and Cbl-b, controls signaling downstream from many receptor-tyrosine kinases (RTK). Cbl proteins bind to phosphotyrosine residues on activated RTKs to affect ligand-dependent ubiquitylation of these receptors targeting them for degradation in the lysosome. Both c-Cbl and Cbl-b contain a ubiquitin-associated (UBA) domain, which is important for Cbl dimerization and tyrosine phosphorylation; however, the mechanism of UBA-mediated dimerization and its requirement for Cbl biological activity is unclear. Here, we report the crystal structure of the UBA domain of c-Cbl refined to 2.1-A resolution. The structure reveals the protein is a symmetric dimer tightly packed along a large hydrophobic surface formed by helices 2 and 3. NMR chemical shift mapping reveals heterodimerization can occur with the related Cbl-b UBA domain via the same surface employed for homodimerization. Disruption of c-Cbl dimerization by site-directed mutagenesis impairs c-Cbl phosphorylation following activation of the Met/hepatocyte growth factor RTK and c-Cbl-dependent ubiquitination of Met. This provides direct evidence for a role of Cbl dimerization in terminating signaling following activation of RTKs.  相似文献   
43.
44.
During apoptosis, the BCL-2 protein family controls mitochondrial outer membrane permeabilization (MOMP), but the dynamics of this regulation remain controversial. We employed chimeric proteins composed of exogenous BH3 domains inserted into a tBID backbone that can activate the proapoptotic effectors BAX and BAK to permeabilize membranes without being universally sequestered by all antiapoptotic BCL-2 proteins. We thus identified two "modes" whereby prosurvival BCL-2 proteins can block MOMP, by sequestering direct-activator BH3-only proteins ("MODE 1") or by binding active BAX?and BAK ("MODE 2"). Notably, we found that MODE 1 sequestration is less efficient and more easily derepressed to promote MOMP than MODE 2. Further, MODE 2 sequestration prevents mitochondrial fusion. We provide a unified model of BCL-2 family function that helps to explain otherwise paradoxical observations relating to MOMP, apoptosis, and mitochondrial dynamics.  相似文献   
45.
Calpains are calcium-dependent proteases that are required for numerous intracellular processes but also play an important role in the development of pathologies such as ischemic injury and neurodegeneration. Many current small molecule calpain inhibitors also inhibit other cysteine proteases, including cathepsins, and need improved selectivity. The specificity of inhibition of several calpains and papain was profiled using synthetic positional scanning libraries of epoxide-based compounds that target the active-site cysteine. These peptidomimetic libraries probe the P4, P3, and P2 positions, display (S,S)- or (R,R)-epoxide stereochemistries, and incorporate both natural and non-natural amino acids. To facilitate library screening, an SDS-PAGE assay that measures the extent of hydrolysis of an inactive recombinant m-calpain was developed. Individual epoxide inhibitors were synthesized guided by calpain-specific preferences observed from the profiles and tested for inhibition against calpain. The most potent compounds were assayed for specificity against cathepsins B, L, and K. Several compounds demonstrated high inhibition specificity for calpains over cathepsins. The best of these inhibitors, WRH(R,R), irreversibly inactivates m- and mu-calpain rapidly (k(2)/K(i) = 131,000 and 16,500 m(-1) s(-1), respectively) but behaves exclusively as a reversible and less potent inhibitor toward the cathepsins. X-ray crystallography of the proteolytic core of rat mu-calpain inactivated by the epoxide compounds WR gamma-cyano-alpha-aminobutyric acid (S,S) and WR allylglycine (R,R) reveals that the stereochemistry of the epoxide influences positioning and orientation of the P2 residue, facilitating alternate interactions within the S2 pocket. Moreover, the WR gamma-cyano-alpha-aminobutyric acid (S,S)-complexed structure defines a novel hydrogen-bonding site within the S2 pocket of calpains.  相似文献   
46.
47.
The sites of catabolism of murine monomeric IgA   总被引:3,自引:0,他引:3  
The tissue sites of monomeric IgA (mIgA) catabolism were determined in a BALB/c mouse model. Mouse mIgA myeloma proteins were labeled either by direct iodination or by coupling the residualizing label, dilactitol-125I-tyramine (125I-DLT) to the proteins; catabolites from protein labeled with 125I-DLT accumulate at the site of protein degradation, allowing identification of the tissue and cellular sites involved in catabolism of the protein. The circulating half-lives of 125I- and 125I-DLT-mIgA were the same. The distribution of radioactivity in tissues was measured at 1, 3, 24, and 96 h after iv. injection of 125I-DLT-labeled mIgA, dimeric IgA (dIgA), IgG, or mouse serum albumin. The greatest uptake of 125I-DLT-mIgA was attributable to the liver. This organ accounted for more internal catabolism of mIgA than all other tissues combined. In contrast, 125I-DLT-IgG was catabolized equally in skin, muscle, and liver. These data indicate that, in mice, the liver is the major site of mIgA catabolism. To determine the cell types involved, collagenase digestion was used to isolate parenchymal and non-parenchymal cells from perfused liver of animals injected with 125-DLT-mIgA. Most of the radioactivity was associated with the hepatocyte fraction, even though both cell types showed uptake of 125I-DLT-mIgA. Inhibition studies, with asialofetuin and mouse IgA demonstrated that the uptake of mIgA by liver cells was mediated primarily by the asialoglycoprotein receptor.  相似文献   
48.
Nonalcoholic fatty liver disease (NAFLD) is very prevalent and now considered the most common cause of chronic liver disease. Staging the severity of liver damage is very important because the prognosis of NAFLD is highly variable. The long-term prognosis of patients with NAFLD remains incompletely elucidated. Even though the annual fibrosis progression rate is significantly higher in patients with nonalcoholic hepatitis (NASH), both types of NAFLD (nonalcoholic fatty liver and nonalcoholic steatohepatitis) can lead to fibrosis. The risk for progressive liver damage and poor outcomes is assessed by staging the severity of liver injury and liver fibrosis. Algorithms (scores) that incorporate various standard clinical and laboratory parameters alongside imaging-based approaches that assess liver stiffness are helpful in predicting advanced fibrosis.  相似文献   
49.
Uncontrolled activation of calpain can lead to necrotic cell death and irreversible tissue damage. We have discovered an intrinsic mechanism whereby the autolysis-generated protease core fragment of calpain is inactivated through the inherent instability of a key alpha-helix. This auto-inactivation state was captured by the 1.9 A Ca(2+)-bound structure of the protease core from m-calpain, and sequence alignments suggest that it applies to about half of the calpain isoforms. Intact calpain large subunits are also subject to this inhibition, which can be prevented through assembly of the heterodimers. Other isoforms or their released cores are not silenced by this mechanism and might contribute to calpain patho-physiologies.  相似文献   
50.
The physiological role of the skeletal muscle-specific calpain 3, p94, is presently unknown, but defects in its gene cause limb girdle muscular dystrophy type 2A. This calcium-dependent cysteine protease resembles the large subunit of m-calpain but with three unique additional sequences: an N-terminal region (NS), and two insertions (IS1 and IS2). The latter two insertions have been linked to the chronic instability of the whole enzyme both in vivo and in vitro. We have shown previously that the core of p94 comprising NS, domains I and II, and IS1 is stable as a recombinant protein in the absence of Ca(2+) and undergoes autolysis in its presence. Here we show that p94I-II cannot hydrolyze an exogenous substrate before autolysis but is increasingly able to do so when autolysis proceeds for several hours. This gain in activity is caused by cleavage of IS1 during autolysis because a deletion mutant lacking the NS region (p94I-II DeltaNS) shows the same activation profile. Similarly, the calpain inhibitors E-64 and leupeptin have almost no inhibitory effect on substrate hydrolysis by p94I-II soon after calcium addition but cause complete inhibition when autolysis progresses for several hours. As autolysis proceeds, there is release of the internal IS1 peptide, but the two portions of the core remain tightly associated. Modeling of p94I-II suggests that IS1 contains an amphipathic alpha-helix flanked by extended loops. The latter are the targets of autolysis and limited digestion by exogenous proteases. The presence and location of the alpha-helix in recombinant IS1 were confirmed by circular dichroism and by the introduction of a L286P helix-disrupting mutation. Within p94I-II, L286P caused premature autoproteolysis of the enzyme. IS1 is an elaboration of a loop in domain II near the active site, and it acts as an internal autoinhibitory propeptide, blocking the active site of p94 from substrates and inhibitors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号