首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   342篇
  免费   33篇
  2024年   1篇
  2023年   2篇
  2022年   9篇
  2021年   18篇
  2020年   8篇
  2019年   22篇
  2018年   27篇
  2017年   14篇
  2016年   21篇
  2015年   17篇
  2014年   22篇
  2013年   28篇
  2012年   46篇
  2011年   20篇
  2010年   14篇
  2009年   14篇
  2008年   17篇
  2007年   18篇
  2006年   15篇
  2005年   9篇
  2004年   12篇
  2003年   7篇
  2002年   4篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1992年   1篇
  1988年   1篇
  1977年   1篇
排序方式: 共有375条查询结果,搜索用时 781 毫秒
91.
1. In both the intact guinea pig myometrium and human platelets, cAMP accumulation was enhanced by prostaglandin I2 (prostacyclin, PGI2) and forskolin with potentiated responses in the simultaneous presence of both effectors. Under basal conditions, forskolin caused rises in platelet cAMP concentration through a single low-affinity interaction (Kapp = 90 microM) while in myometrium, activation involved both a low-affinity (Kapp = 10 microM) and a high-affinity (Kapp = 0.8 microM) component. The contribution of the high-affinity component could be reduced when endogenous PGI2 was decreased. In both tissues, the synergistic effect of forskolin in the presence of PGI2 was mediated by a single high-affinity interaction (Kapp = 0.3 microM). The data were consistent with a low-affinity interaction of the diterpene with the cyclase catalytic unit C generating the C...forskolin state and with a high-affinity interaction of the diterpene with the activated complex (stimulatory regulatory protein) and C generating the potentiated Gs-C...forskolin state. 2. Both norepinephrine in platelets and carbachol in the myometrium (via Gi, the inhibitory regulatory protein) inhibited PGI2-mediated cAMP accumulation (EC50 = 100 nM and 8 nM respectively). The persistently activated cAMP-generating system induced by cholera toxin in the myometrium was also susceptible to inhibition but the EC50 for carbachol was increased to 50 nM and the extent of inhibition was decreased. Forskolin-mediated effect in platelets was inhibited by norepinephrine as was the PGI2 response. By contrast, the synergistic state of the cyclase resisted the inhibitory action of norepinephrine and carbachol in platelets and myometrium respectively. In the myometrium, where the cAMP response due to forskolin alone partially involved some synergistic Gs-C ... forskolin species, carbachol at 50 microM elicited no more than 30% inhibition. Inhibition was partly improved (60% inhibition at 1 microM carbachol) when the contribution of the Gs-C species was decreased by lowering the concentration of local PGI2. Partial inhibition by norepinephrine was similarly observed in platelets under partial synergistic conditions. The data suggest that receptor-mediated inhibition of cAMP generation could be differentially expressed depending on the nature of the active species of the cyclase involved in the stimulatory responses.  相似文献   
92.
Passage, comminution and digestion rates of large and small particles were estimated using a rumen evacuation technique and total faecal collection with five lactating dairy cows in a 5 × 5 Latin square experiment. Two grass and two red clover silages harvested at early and late primary growth stages and a 1:1 mixture of late harvest grass and early harvest red clover were the dietary treatments. Cows received 9.0 kg supplementary concentrate per day. Ruminal contents and faeces were divided into large (>1.25 mm) and small (1.25–0.038 mm) particles by wet sieving. Indigestible neutral detergent fibre (iNDF) was determined by 12 days ruminal in situ incubation followed by neutral detergent extraction. Plant species did not affect ruminal particle size distribution, whereas advancing forage maturity decreased the proportion of large particles for both grass and red clover silage diets. Ruminal pool size of iNDF was higher (P<0.001) with red clover compared to grass silage diets. Ruminal passage rates of iNDF and potentially digestible NDF (pdNDF) increased with decreasing particle size (P<0.01). Passage rate of iNDF for small particles was slower (P<0.01) when red clover compared to grass silage diets were fed. Particle comminution rate in the rumen was slower (P<0.001) with red clover compared to grass silage diets and it increased (P<0.01) with advancing forage maturity. The contribution of particle comminution to ruminal mean retention time of iNDF in the ruminal large particle pool was smaller (P<0.01) in red clover compared to grass silage diets and it increased (P<0.05) with the mixed silage compared to the separate silages. Passage rate of pdNDF for both large and small particles was not affected by dietary treatments. Digestion rate of pdNDF for large particles was faster (P<0.001) with red clover compared to grass silage diets. Differences in ruminal passage and digestion rates of the large and small particles, in addition to differences in the passage and digestion rates of red clover compared to grass silage diets, emphasize the need to consider particle size and forage type in metabolic models predicting feed intake and fibre digestibility in ruminants.  相似文献   
93.
Dupuytren''s disease (DD) is a benign, fibroproliferative disease of the palmar fascia, with excessive extracellular matrix (ECM) deposition and over-production of cytokines and growth factors, resulting in digital fixed flexion contractures limiting hand function and patient quality of life. Surgical fasciectomy is the gold standard treatment but is invasive and has associated morbidity without limiting disease recurrence. Injectable Collagenase Clostridium histolyticum (CCH) - Xiaflex® - is a novel, nonsurgical option with clinically proven in vivo reduction of DD contractures but with limited in vitro data demonstrating its cellular and molecular effects. The aim of this study was to delineate the effects of CCH on primary fibroblasts isolated from DD and non-DD anatomical sites (using RTCA, LDH, WST-1, FACS, qRT-PCR, ELISA and In-Cell Quantitative Western Blotting) to compare the efficacy of varying concentrations of Xiaflex® against a reagent grade Collagenase, Collagenase A. Results demonstrated that DD nodule and cord fibroblasts had greater proliferation than those from fat and skin. Xiaflex® exposure resulted in dose- and time-dependent inhibition of cellular spreading, attachment and proliferation, with cellular recovery after enzyme removal. Unlike Collagenase A, Xiaflex® did not cause apoptosis. Collagen expression patterns were significantly (p<0.05) different in DD fibroblasts across anatomical sites - the highest levels of collagen I and III were detected in DD nodule, with DD cord and fat fibroblasts demonstrating a smaller increase in both collagen expression relative to DD skin. Xiaflex® significantly (p<0.05) down-regulated ECM components, cytokines and growth factors in a dose-dependent manner. An in vitro scratch wound assay model demonstrated that, at low concentrations, Xiaflex® enabled a faster fibroblast reparatory migration into the wound, whereas, at high concentrations, this process was significantly (p<0.05) inhibited. This is the first report elucidating potential mechanisms of action of Xiaflex® on Dupuytren fibroblasts, offering a greater insight and a better understanding of its effect in DD.  相似文献   
94.
Biomechanics and Modeling in Mechanobiology - Targeted drug delivery (TDD) to abdominal aortic aneurysm (AAA) using a controlled and efficient approach has recently been a significant challenge. In...  相似文献   
95.
96.
Quinazolinones represent a class of sedative and anticancer drugs. Quinazolinones-based compounds have ability to suppress prostate tumor growth via apoptosis. Apoptosis is very common in embryos and adults of normal and injured mammalian testes. Effects a new derivative of quinazolinone (4(3H) quinazolinone-2-ethyl-2-phenyl ethyl (QEPE)), on the testis of Balb/C mice embryos were investigated. QEPE was able to reduce number of germ cells and diameter of seminiferous tubules. TUNEL assay analysis indicated that reduction correlated with an increase in the number of apoptotic cell. Furthermore, electron microscope observations confirmed typical apoptotic morphologies characterized by chromatin fragmentation. Finally, RT-PCR analysis showed QEPE increases the levels of Fas/Fasl and decreases C-Flip mRNAs in the testis of exposed embryos.  相似文献   
97.
Sorting of transmembrane proteins into the inner vesicles of multivesicular bodies for subsequent delivery to the vacuole/lysosome can be induced by attachment of a single ubiquitin or K63-linked ubiquitin chains to the cytosolic portion of the cargo in yeast and mammals. In plants, large efforts have been undertaken to elucidate the mechanisms of vacuolar trafficking of soluble proteins. Sorting of transmembrane proteins, by contrast, is still largely unexplored. As a proof of principle, that ubiquitin is involved in vacuolar sorting in plants we show that a translational fusion of a single ubiquitin to the Arabidopsis plasma membrane ATPase PMA-EGFP is sufficient to induce its endocytosis and sorting into the vacuolar lumen. Sorting of the artificial reporter is not dependent on ubiquitin chain formation, but involves ubiquitin's hydrophobic patch and can be inhibited by coexpression of a dominant-negative version of the ESCRT (endosomal sorting complex required for transport) related protein AtSKD1 (SUPPRESSOR OF K+ TRANSPORT GROWTH DEFECT1). Our results suggest that ubiquitin can in principle act as vacuolar sorting signal in plants.  相似文献   
98.
Activation of thromboxane receptors (TPr) may promote atherosclerosis by enhancing oxidative stress and inflammation. This study examined the role of Nox1, an NADPH-oxidase subunit, in the enhancement of interleukin (IL)-1β-induced monocyte adhesion by TPr. In cultured rat aortic vascular smooth muscle cells (VSMCs), U46619, a stable thromboxane A(2) mimetic, together with interleukin-1β significantly enhanced Nox1 mRNA expression, as well as adhesion of THP-1 monocytes. Activation of TPr also enhanced IL-1β-induced vascular cell adhesion molecule (VCAM)-1 expression, but inhibited inducible nitric oxide synthase (iNOS) expression. Silencing Nox1 expression by siRNA prevented the U46619 enhancement of IL-1β-induced monocyte adhesion, but had no significant effect on VCAM-1 or iNOS expression. Furthermore, monocyte adhesion was inhibited by superoxide dismutase, enhanced by a specific iNOS inhibitor, l-N(6)-(1-iminoethyl)-lysine, but not influenced by catalase. U46619 inhibited IL-1β-induced cyclic GMP production, and the inhibition was partially prevented by superoxide dismutase. In conclusion, activation of TPr enhances IL-1β-induced Nox1 expression in VSMCs, which is responsible for the up-regulation of monocyte adhesion. The effect of Nox1 is independent of the changes in VCAM-1 and iNOS expression, but depends on the inactivation of nitric oxide via generation of superoxide anion.  相似文献   
99.
100.
A number of recent studies suggest that mitochondrial oxidative damage may be associated with atherosclerosis and the metabolic syndrome. However, much of the evidence linking mitochondrial oxidative damage and excess reactive oxygen species (ROS) with these pathologies is circumstantial. Consequently the importance of mitochondrial ROS in the etiology of these disorders is unclear. Furthermore, the potential of decreasing mitochondrial ROS as a therapy for these indications is not known. We assessed the impact of decreasing mitochondrial oxidative damage and ROS with the mitochondria-targeted antioxidant MitoQ in models of atherosclerosis and the metabolic syndrome (fat-fed ApoE(-/-) mice and ATM(+/-)/ApoE(-/-) mice, which are also haploinsufficient for the protein kinase, ataxia telangiectasia mutated (ATM). MitoQ administered orally for 14weeks prevented the increased adiposity, hypercholesterolemia, and hypertriglyceridemia associated with the metabolic syndrome. MitoQ also corrected hyperglycemia and hepatic steatosis, induced changes in multiple metabolically relevant lipid species, and decreased DNA oxidative damage (8-oxo-G) in multiple organs. Although MitoQ did not affect overall atherosclerotic plaque area in fat-fed ATM(+/+)/ApoE(-/-) and ATM(+/-)/ApoE(-/-) mice, MitoQ reduced the macrophage content and cell proliferation within plaques and 8-oxo-G. MitoQ also significantly reduced mtDNA oxidative damage in the liver. Our data suggest that MitoQ inhibits the development of multiple features of the metabolic syndrome in these mice by affecting redox signaling pathways that depend on mitochondrial ROS such as hydrogen peroxide. These findings strengthen the growing view that elevated mitochondrial ROS contributes to the etiology of the metabolic syndrome and suggest a potential therapeutic role for mitochondria-targeted antioxidants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号