首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   331篇
  免费   24篇
  国内免费   1篇
  356篇
  2023年   5篇
  2022年   9篇
  2021年   14篇
  2020年   14篇
  2019年   39篇
  2018年   22篇
  2017年   13篇
  2016年   22篇
  2015年   23篇
  2014年   18篇
  2013年   35篇
  2012年   33篇
  2011年   23篇
  2010年   15篇
  2009年   12篇
  2008年   11篇
  2007年   7篇
  2006年   11篇
  2005年   9篇
  2004年   5篇
  2003年   5篇
  2002年   4篇
  2001年   2篇
  1981年   1篇
  1979年   1篇
  1972年   2篇
  1952年   1篇
排序方式: 共有356条查询结果,搜索用时 0 毫秒
71.
Embryonic stem cells have the ability to remain undifferentiated and proliferate indefinitely in vitro while maintaining the potential to differentiate into derivatives of all three embryonic germ layers. These cells have, therefore, potential for in vitro differentiation studies, gene function, and so on. The aim of this study was to produce a human embryonic stem cell line. An inner cell mass of a human blastocyst was separated and cultured on mouse embryonic fibroblasts in embryonic stem cell medium with related additives. The established line was evaluated by morphology; passaging; freezing and thawing; alkaline phosphatase; Oct-4 expression; anti-surface markers including Tra-1-60 and Tra-1-81; and karyotype and spontaneous differentiation. Differentiated cardiomyocytes and neurons were evaluated by transmission electron microscopy and immunocytochemistry. Here, we report the derivation of a new embryonic stem cell line (Royan H1) from a human blastocyst that remains undifferentiated in morphology during continuous passaging for more than 30 passages, maintains a normal XX karyotype, is viable after freezing and thawing, and expresses alkaline phosphatase, Oct-4, Tra-1-60, and Tra-1-81. These cells remain undifferentiated when grown on mouse embryonic fibroblast feeder layers in the presence or absence of recombinant human leukemia inhibitory factor. Royan H1 cells can differentiate in vitro in the absence of feeder cells and can produce embryoid bodies that can further differentiate into beating cardiomyocytes as well as neurons. These results define Royan H1 cells as a new human embryonic stem cell line.  相似文献   
72.
Chemokines, a subclass of cytokine superfamily have both pro-inflammatory and migratory role and serve as chemoattractant of immune cells during the inflammatory responses ensuing spinal cord injury (SCI). The chemokines, especially CXCL-1, CXCL-9, CXCL-10 and CXCL-12 contribute significant part in the inflammatory secondary damage of SCI. Inhibiting chemokine’s activity and thereby the secondary damage cascades has been suggested as a chemokine-targeted therapeutic approach to SCI. To optimize the inhibition of secondary injury through targeted chemokine therapy, accurate knowledge about the temporal profile of these cytokines following SCI is required. Hence, the present study was planned to determine the serum levels of CXCL-1, CXCL-9, CXCL-10 and CXCL-12 at 3–6 h, 7 and 28 days and 3 m after SCI in male and female SCI patients (n = 78) and compare with age- and sex-matched patients with non-spinal cord injuries (NSCI, n = 70) and healthy volunteers (n = 100). ANOVA with Tukey post hoc analysis was used to determine the differences between the groups. The data from the present study show that the serum level of CXCL-1, CXCL-9 and CXCL-10 peaked on day 7 post-SCI and then declined to the control level. In contrast, significantly elevated level of CXCL-12 persisted for 28 days post SCI. In addition, post-SCI expression of CXCL-12 was found to be sex-dependent. Male SCI patients expressed significantly higher CXCL-12 when compared to control and SCI female. We did not observe any change in chemokines level of NSCI. Further, the age of the patients did not influence chemokines expression after SCI. These observations along with SCI-induced CSF-chemokine level should contribute to the identification of selective and temporal chemokine targeted therapy after SCI.  相似文献   
73.
Purpose

New-generation wide-base tire (NG-WBT) is known for improving fuel economy and at the same time for potentially causing a greater damage to pavement. No study has been conducted to evaluate the net environmental saving of the combined system of pavements and NG-WBT. This study adopted a holistic approach (life cycle assessment [LCA] and life cycle costing [LCC]) to quantitatively evaluate the environmental and economic impact of using NG-WBT.

Methods

The net effect of different levels of market penetration of NG-WBT on energy consumption, global warming potential (GWP), and cost based on the fatigue cracking and rutting performance of two different asphalt concrete (AC) pavement structures was evaluated. The performance of pavements was determined based on pavement design lives; pavement surface characteristics, and pavement critical strain responses obtained from the artificial neural network (ANN) based on finite element (FE) simulations were used to calculate design lives of pavements. Based on the calculated design lives, life cycle inventory (LCI) and cost databases, and rolling resistance (RR) models previously developed by the University of Illinois at Urbana-Champaign (UIUC) were used to calculate the environmental and economic impact of the combined system.

Results and discussion

The fuel economy improvement using NG-WBT is 1.5% per axle. Scenario-based case studies were conducted. Considering 0% NG-WBT market penetration (or 100% standard dual tire assembly [DTA]) as a baseline, scenario 1 assumed the same fatigue and rutting potential between NG-WBT and DTA; therefore, the only difference came from fuel economy improvement of using NG-WBT. In scenario 2, pavement fatigue cracking potential determined the pavement design life; both thick and thin AC overlay sections experienced positive net environmental savings, but mixed net economic savings. In scenario 3, pavement rutting potential determined the pavement design life; the thick AC overlay section experienced positive net environmental savings, but mixed net economic savings. The thin section experienced negative net environmental and economic savings.

Conclusions

The outcomes of scenario-based case studies indicated that NG-WBT can result in significant savings in life cycle energy consumption and cost, and GWP; however, these benefits were sensitive to the method used to determine the pavement performance; especially, a small change in pavement strain can result in significant change in pavement life. In addition, the effect of fuel price/economy improvement, discount rate, and International Roughness Index (IRI) threshold values was studied in the sensitivity analyses.

  相似文献   
74.
Pantoea stewartii subsp. stewartii, the causal agent of Stewart's wilt of sweet corn, produces a yellow carotenoid pigment. A nonpigmented mutant was selected from a bank of mutants generated by random transposon mutagenesis. The transposon insertion site was mapped to the crtB gene, encoding a putative phytoene synthase, an enzyme involved in the early steps of carotenoid biosynthesis. We demonstrate here that the carotenoid pigment imparts protection against UV radiation and also contributes to the complete antioxidant pathway of P. stewartii. Moreover, production of this pigment is regulated by the EsaI/EsaR quorum-sensing system and significantly contributes to the virulence of the pathogen in planta.  相似文献   
75.
Pantoea stewartii subsp. stewartii, a xylem-dwelling bacterium, is the causal agent of Stewart's wilt and blight of sweet corn. The goal of this study was to characterize the only gene in the P. stewartii subsp. stewartii genome predicted to encode an endoglucanase (EGase); this gene was designated engY. Culture supernatants from P. stewartii subsp. stewartii and Escherichia coli expressing recombinant EngY protein possessed both EGase and xylanase activities. Deletion of engY abolished EGase and xylanase activity, demonstrating that EngY appears to be the major EGase or xylanase produced by P. stewartii subsp. stewartii. Most importantly, our results show that EngY contributes to movement in the xylem and disease severity during the wilting phase of Stewart's wilt but is not required for water-soaked lesion formation.  相似文献   
76.
Methyl tert-butyl ether (MTBE) is widely used as gasoline oxygenate and octane number enhancer for more complete combustion in order to reduce the air pollution caused by motor vehicle exhaust. The possible adverse effects of MTBE on human health are of major public concern. However, information on the metabolism of MTBE in human tissues is scarce. The present study demonstrates that human cytochrome P450 2A6 is able to metabolize MTBE to tert-butyl alcohol (TBA), a major circulating metabolite and marker for exposure to MTBE. As CYP2A6 is known to be constitutively expressed in human livers, we infer that it may play a significant role in metabolism of gasoline ethers in liver tissue.  相似文献   
77.
Summary Our objective was to evaluate the physiological response of Fischerella ambigua FS18 to the combined influence of pH (5, 7 and 9) and light intensity (3 and 300 μmol photon m−2 s−1). Growth rates were similar at pH 9 and pH 7. There was no growth at pH 5. Increasing light intensity did not have any considerable influence on growth rates. Chlorophyll concentration was higher at pH 7 at all light intensities. Chlorophyll concentration decreased with increasing light intensity from 3 to 300 μmol photon m−2 s−1. Synthesis of the phycobiliproteins (PBP), phycocyanin (PC) and allophycocyanin (APC) had the highest rate in pH 7. Increasing irradiance decreased the concentrations of all PBPs. The light-saturated photosynthetic rate was clearly higher at high light intensity. With respect to nitrogenase activity, the highest rate was at pH 9 and 300 μmol photon m−2 s−1. Irradiance did not affect significantly this activity at pH 7. This cyanobacterium seems to be alkalophilic with maximum nitrogenase activity and photosynthesis at pH 9. It can also adapt its photosynthetic apparatus to the variable factors that are found in rice fields.  相似文献   
78.
Catalytic steam reforming of glycerol for H2 production has been evaluated experimentally in a continuous flow fixed-bed reactor. The experiments were carried out under atmospheric pressure within a temperature range of 400–700 °C. A commercial Ni-based catalyst and a dolomite sorbent were used for the steam reforming reactions and in situ CO2 removal. The product gases were measured by on-line gas analysers. The results show that H2 productivity is greatly increased with increasing temperature and the formation of methane by-product becomes negligible above 500 °C. The results suggest an optimal temperature of ∼500 °C for the glycerol steam reforming with in situ CO2 removal using calcined dolomite as the sorbent, at which the CO2 breakthrough time is longest and the H2 purity is highest. The shrinking core model and the 1D-diffusion model describe well the CO2 removal under the conditions of this work.  相似文献   
79.
Biodegradation of long chain n-alkanes and crude oil with fast rate and high concentration are desirable for bioremediation, especially in heavily oil-polluted areas, and enhanced oil recovery. We discovered Rhodococcus sp. Moj-3449 with such unique abilities by screening microorganisms for the growth on n-hexadecane at 30 mg/mL. The new strain grew very fast on 120 mg/mL of n-hexadecane giving a cell density of 14.7 g cdw/L after only 2 days’ incubation. During the growth with this strain, the oil–water phases were rapidly emulsified, giving rise to tolerance to high alkane concentration (250 mg/mL) and fast growth rate of 0.10–0.20 h?1 for alkane concentration of 1–180 mg/mL. The degraded concentration of n-hexadecane increased linearly with the initial alkane concentration (1–250 mg/mL). Incubation on n-hexadecane at 250 mg/mL for 7 days gave a cell density of 13.5 g cdw/L and degraded 124 mg/mL of n-hexadecane. The strain grew also fast on n-dodecane (C12), n-tetradecane (C14), and n-octadecane (C18), with degradation preference of C14 (=C16) > C12 > C18. Different from many alkane-degrading strains, Rhodococcus sp. Moj-3449 was found to have subterminal oxidation pathway. Rhodococcus sp. Moj-3449 degraded also crude oil fast at 60–250 mg/mL, with a wide range of n-alkanes (C10–C35) as substrates in which C14–C19 are preferred. The degradation ability increased with initial oil concentration from 60 to 150 mg/mL and slightly decreased afterwards. Incubation on 150 mg/mL of crude oil for 7 days degraded 37% of n-alkanes. The outstanding ability of rapidly degrading long chain n-alkanes and crude oil at high concentration makes Rhodococcus sp. Moj-3449 potentially useful for bioremediation and microbial enhanced oil recovery.  相似文献   
80.
Medically important arthropods, including fleas, play an important role in causing clinical disorders and disease in man and domestic animals. This study was conducted to determine the seasonal flea infestations for domestic dogs from different geographic regions of Iran. A total of 407 fleas, belonging to 5 different species, were recovered from 83 domestic dogs from 3 regions. There was a distinctive pattern of species distribution and infestations with the highest infestation rates observed in a temperate climate and higher rainfall. Additionally, fleas were observed over all seasons, except February and March, with the highest infestation rate observed in August (24.7%) and the lowest rate in January (1.7%). They also parasitize dogs with a different spectrum of species. The cat flea, Ctenocephalides felis (67.5%), exhibited the highest prevalence among all flea species found on dogs. Thus, climatic conditions and seasonal patterns impact on flea infestation and must be considered in developing control programs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号