首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   174篇
  免费   8篇
  2022年   5篇
  2021年   6篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2017年   1篇
  2016年   3篇
  2015年   9篇
  2014年   7篇
  2013年   13篇
  2012年   16篇
  2011年   6篇
  2010年   16篇
  2009年   9篇
  2008年   11篇
  2007年   14篇
  2006年   5篇
  2005年   12篇
  2004年   11篇
  2003年   9篇
  2002年   7篇
  2001年   1篇
  2000年   2篇
  1999年   2篇
  1994年   2篇
  1993年   1篇
  1990年   1篇
  1989年   1篇
  1981年   1篇
  1977年   2篇
  1973年   1篇
  1972年   1篇
  1970年   1篇
  1969年   1篇
排序方式: 共有182条查询结果,搜索用时 15 毫秒
71.
72.
The aim of this study was to obtain unbiased estimates of the diversity parameters, the population history, and the degree of admixture in Cika cattle which represents the local admixed breeds at risk of extinction undergoing challenging conservation programs. Genetic analyses were performed on the genome-wide Single Nucleotide Polymorphism (SNP) Illumina Bovine SNP50 array data of 76 Cika animals and 531 animals from 14 reference populations. To obtain unbiased estimates we used short haplotypes spanning four markers instead of single SNPs to avoid an ascertainment bias of the BovineSNP50 array. Genome-wide haplotypes combined with partial pedigree and type trait classification show the potential to improve identification of purebred animals with a low degree of admixture. Phylogenetic analyses demonstrated unique genetic identity of Cika animals. Genetic distance matrix presented by rooted Neighbour-Net suggested long and broad phylogenetic connection between Cika and Pinzgauer. Unsupervised clustering performed by the admixture analysis and two-dimensional presentation of the genetic distances between individuals also suggest Cika is a distinct breed despite being similar in appearance to Pinzgauer. Animals identified as the most purebred could be used as a nucleus for a recovery of the native genetic background in the current admixed population. The results show that local well-adapted strains, which have never been intensively managed and differentiated into specific breeds, exhibit large haplotype diversity. They suggest a conservation and recovery approach that does not rely exclusively on the search for the original native genetic background but rather on the identification and removal of common introgressed haplotypes would be more powerful. Successful implementation of such an approach should be based on combining phenotype, pedigree, and genome-wide haplotype data of the breed of interest and a spectrum of reference breeds which potentially have had direct or indirect historical contribution to the genetic makeup of the breed of interest.  相似文献   
73.
Electroporation is a process where increased permeability of cells exposed to an electric field is observed. It is used in many biomedical applications including electrogene transfection and electrochemotherapy. Although the increased permeability of the membrane is believed to be the result of pores due to an induced transmembrane voltage U(m), the exact molecular mechanisms are not fully explained. In this study we analyze transient conductivity changes during the electric pulses and increased membrane permeability for ions and molecules after the pulses in order to determine which parameters affect stabilization of pores, and to analyze the relation between transient pores and long-lived transport pores. By quantifying ion diffusion, fraction of transport pores f(per) was obtained. A simple model, which assumes a quadratic dependence of f(per) on E in the area where U(m)>U(c) very accurately describes experimental values, suggesting that f(per) increases with higher electric field due to larger permeabilized area and due to higher energy available for pore formation. The fraction of transport pores increases also with the number of pulses N, which suggest that each pulse contributes to formation of more and/or larger stable transport pores, whereas the number of transient pores does not depend on N.  相似文献   
74.
Two point mutations (T>G and T>C) at the same 8993 nucleotide of mitochondrial DNA (at comparable mutant load), affecting the ATPase 6 subunit of the F1F0-ATPase, result in neurological phenotypes of variable severity in humans. We have investigated mitochondrial function in lymphocytes from individuals carrying the 8993T>C mutation: the results were compared with data from five 8993T>G NARP (Neuropathy, Ataxia and Retinitis Pigmentosa) patients. Both 8993T>G and 8993T>C mutations led to energy deprivation and ROS overproduction. However, the relative contribution of the two pathogenic components is different depending on the mutation considered. The 8993T>G change mainly induces an energy deficiency, whereas the 8993T>C favours an increased ROS production. These results possibly highlight the different pathogenic mechanism generated by the two mutations at position 8993 and provide useful information to better characterize the biochemical role of the highly conserved Leu-156 in ATPase 6 subunit of the mitochondrial ATP synthase complex.  相似文献   
75.
TIR (Toll/IL-1 receptor) domains mediate interactions between TLR (Toll-like) or IL-1 family receptors and signaling adapters. While homotypic TIR domain interactions mediate receptor activation they are also usurped by microbial TIR domain containing proteins for immunosuppression. Here we show the role of a dimerized TIR domain platform for the suppression as well as for the activation of MyD88 signaling pathway. Coiled-coil dimerization domain, present in many bacterial TCPs, potently augments suppression of TLR/IL-1R signaling. The addition of a strong coiled-coil dimerization domain conferred the superior inhibition against the wide spectrum of TLRs and prevented the constitutive activation by a dimeric TIR platform. We propose a molecular model of MyD88-mediated signaling based on the dimerization of TIR domains as the limiting step.  相似文献   
76.
An NAD(+)-dependent D-xylose dehydrogenase, XylB, from Caulobacter crescentus was expressed in Saccharomyces cerevisiae, resulting in production of 17 ± 2 g D-xylonate l(-1) at 0.23 gl(-1)h(-1) from 23 g D-xylose l(-1) (with glucose and ethanol as co-substrates). D-Xylonate titre and production rate were increased and xylitol production decreased, compared to strains expressing genes encoding T. reesei or pig liver NADP(+)-dependent D-xylose dehydrogenases. D-Xylonate accumulated intracellularly to ~70 mgg(-1); xylitol to ~18 mgg(-1). The aldose reductase encoding gene GRE3 was deleted to reduce xylitol production. Cells expressing D-xylonolactone lactonase xylC from C. crescentus with xylB initially produced more extracellular D-xylonate than cells lacking xylC at both pH 5.5 and pH 3, and sustained higher production at pH 3. Cell vitality and viability decreased during D-xylonate production at pH 3.0. An industrial S. cerevisiae strain expressing xylB efficiently produced 43 g D-xylonate l(-1) from 49 g D-xylose l(-1).  相似文献   
77.
BackgroundTraditional rehabilitation protocols for surgically treated metacarpal shaft fracture allow for return to play at 6-8 weeks post-operative. This may be devastating for the elite athlete. We outline a protocol that may allow for professional basketball players to successfully return to sport within four weeks following surgery.MethodsProfessional basketball players who sustained non-thumb metacarpal shaft fractures were included. All athletes underwent open reduction and internal fixation of the injured metacarpal. Patients were subsequently enrolled into an accelerated rehabilitation protocol.ResultsThe five athletes in our case series successfully passed return to sport testing within four weeks of surgery.ConclusionA plate and screw construct can potentially allow for professional basketball players to return to play in half the time. Future research studies should include a larger pool of athletes to further investigate accelerated rehabilitation following surgical fixation of metacarpal fractures. Level of Evidence: IV  相似文献   
78.
The ability of cells to maintain pH homeostasis in response to environmental changes has elicited interest in basic and applied research and has prompted the development of methods for intracellular pH measurements. Many traditional methods provide information at population level and thus the average values of the studied cell physiological phenomena, excluding the fact that cell cultures are very heterogeneous. Single-cell analysis, on the other hand, offers more detailed insight into population variability, thereby facilitating a considerably deeper understanding of cell physiology. Although microscopy methods can address this issue, they suffer from limitations in terms of the small number of individual cells that can be studied and complicated image processing. We developed a noninvasive high-throughput method that employs flow cytometry to analyze large populations of cells that express pHluorin, a genetically encoded ratiometric fluorescent probe that is sensitive to pH. The method described here enables measurement of the intracellular pH of single cells with high sensitivity and speed, which is a clear improvement compared to previously published methods that either require pretreatment of the cells, measure cell populations, or require complex data analysis. The ratios of fluorescence intensities, which correlate to the intracellular pH, are independent of the expression levels of the pH probe, making the use of transiently or extrachromosomally expressed probes possible. We conducted an experiment on the kinetics of the pH homeostasis of Saccharomyces cerevisiae cultures grown to a stationary phase after ethanol or glucose addition and after exposure to weak acid stress and glucose pulse. Minor populations with pH homeostasis behaving differently upon treatments were identified.  相似文献   
79.
80.
Astrocytes participate in the clearance of neurotransmitters by their uptake and subsequent enzymatic degradation. Histamine as a polar and/or protonated molecule must use a carrier to be transported across the cell membrane, although a specific histamine transporter has not been elucidated, yet. In this work we upgraded the kinetic studies of histamine uptake into neonatal rat cultured type 1 astrocytes with quantum chemical calculations of histamine pKa values in conjunction with Langevin dipoles solvation model as the first step toward microscopic simulation of transport. Our results indicate that astrocytes transport histamine by at least two carrier mediated processes, a concentration gradient dependent passive and a sodium-dependent and ATP-driven active transport. We also demonstrated that histamine protonation states depend on the polarity of the environment. In conclusion we suggest that histamine, a polar molecule at physiological pH uses at least two different mechanisms for its uptake into astrocytes –an electrodiffusion and Na+-dependent and ouabain sensitive active process. We emphasize relevance of knowledge of histamines protonation states at the rate limiting step of its transport for microscopic simulation that will be possible when structure of histamine transporter is known.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号