首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   137篇
  免费   6篇
  2022年   5篇
  2021年   3篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2017年   1篇
  2016年   3篇
  2015年   9篇
  2014年   4篇
  2013年   13篇
  2012年   14篇
  2011年   6篇
  2010年   15篇
  2009年   9篇
  2008年   10篇
  2007年   11篇
  2006年   2篇
  2005年   10篇
  2004年   9篇
  2003年   7篇
  2002年   4篇
  2001年   1篇
  1999年   1篇
  1994年   1篇
排序方式: 共有143条查询结果,搜索用时 31 毫秒
71.
Eleven strains of Lactobacillus collected in the Culture Collection of Dairy Microorganisms (CCDM) were evaluated for selected probiotic properties such as survival in gastrointestinal fluids, antimicrobial activity, and competition with non-toxigenic Escherichia coli O157:H7 for adhesion on Caco-2 cells. The viable count of lactobacilli was reduced during 3-h incubation in gastric fluid followed by 3-h incubation in intestinal fluid. All strains showed antimicrobial activity and the three most effective strains inhibited the growth of at least 16 indicator strains. Antimicrobial metabolites of seven strains active against Lactobacillus and Clostridium indicator strains were found to be sensitive to proteinase K and trypsin, which indicates their proteinaceous nature. The degree of competitive inhibition of non-toxigenic E. coli O157:H7 adhesion on the surface of Caco-2 cells was strain-dependent. A significant decrease (P?<?0.05) in the number of non-toxigenic E. coli O157:H7 adhering to Caco-2 cells was observed with all lactobacilli. Three strains were selected for additional studies of antimicrobial activity, i.e., Lactobacillus gasseri CCDM 215, Lactobacillus acidophilus CCDM 149, and Lactobacillus helveticus CCDM 82.  相似文献   
72.
Histaminergic signalling constitutes an attractive target for treatment of neuropsychiatric disorders. One obstacle to developing new pharmacological options has been failure to identify putative specific histamine transporter responsible for histamine clearance. Although high-affinity histamine uptake was detected in neonatal cortical astrocytes, its existence in other brain regions remains largely unexplored. We investigated whether cerebellar and striatal astrocytes participate in histamine clearance and evaluated the role of organic cation transporters (OCT) in astroglial histamine transport. Kinetic and pharmacological characteristics of histamine transport were determined in cultured astrocytes derived from neonatal rat cerebellum, striatum and cerebral cortex. As well as astrocytes of cortical origin, cultured striatal and cerebellar astrocytes displayed temperature-sensitive, high-affinity histamine uptake. Exposure to ouabain or Na+-free medium, supplemented with choline chloride markedly depressed histamine transport in cortical astrocytes. Conversely, histamine uptake in striatal and cortical astrocytes was ouabain-resistant and was only partially diminished during incubation in the absence of Na+. Also, histamine uptake remained unaltered upon exposure to OCT inhibitor corticosterone, although OCTs were expressed in cultured astrocytes. Finally, histamine transport in cerebellar and striatal astrocytes was not sensitive to antidepressants. Despite common characteristics, cerebellar astrocytes had lower affinity, but markedly higher transport capacity for histamine compared to striatal astrocytes. Collectively, we provide evidence to suggest that cerebellar, striatal as well as cortical astrocytes possess saturable histamine uptake systems, which are not operated by OCTs. In addition, our data indicate that Na+-independent histamine carrier predominates in cerebellar and striatal astrocytes, whereas Na+-dependent transporter underlies histamine uptake in cortical astrocytes. Our findings implicate a role for histamine transporters in regulation of extracellular histamine concentration in cerebellum and striatum. Inhibition of histamine uptake might represent a viable option to modulate histaminergic neurotransmission.  相似文献   
73.
The mushroom Pleurotus ostreatus has been reported to produce the hemolytic proteins ostreolysin (OlyA), pleurotolysin A (PlyA) and pleurotolysin B (PlyB). The present study of the native and recombinant proteins dissects out their lipid-binding characteristics and their roles in lipid binding and membrane permeabilization. Using lipid-binding studies, permeabilization of erythrocytes, large unilamellar vesicles of various lipid compositions, and electron microscopy, we show that OlyA, a PlyA homolog, preferentially binds to membranes rich in sterol and sphingomyelin, but it does not permeabilize them. The N-terminally truncated Δ48PlyB corresponds to the mature and active form of native PlyB, and it has a membrane attack complex-perforin (MACPF) domain. Δ48PlyB spontaneously oligomerizes in solution, and binds weakly to various lipid membranes but is not able to perforate them. However, binding of Δ48PlyB to the cholesterol and sphingomyelin membranes, and consequently, their permeabilization is dramatically promoted in the presence of OlyA. On these membranes, Δ48PlyB and OlyA form predominantly 13-meric oligomers. These are rosette-like structures with a thickness of ∼9 nm from the membrane surface, with 19.7 nm and 4.9 nm outer and inner diameters, respectively. When present on opposing vesicle membranes, these oligomers can dimerize and thus promote aggregation of vesicles. Based on the structural and functional characteristics of Δ48PlyB, we suggest that it shares some features with MACPF/cholesterol-dependent cytolysin (CDC) proteins. OlyA is obligatory for the Δ48PlyB permeabilization of membranes rich in cholesterol and sphingomyelin.  相似文献   
74.
It is well known that variation in the concentration of estrogens affects insulin action. In this study we examine the impact of estradiol (E2) on insulin signaling in the rat heart. Ovariectomized female rats were treated with E2 6 h prior to analysis of basal protein and mRNA content of insulin signaling molecules, and additionally with insulin 30 min before the experiment to delineate E2 effects on phosphorylations and molecular associations relevant for insulin signaling. The results show that E2 decreased insulin receptor (IR) tyrosine phosphorylation, while it did not alter IR protein and mRNA content. E2 administration did not change IR substrate 1 (IRS‐1) protein content and tyrosine phosphorylation, while decreased mRNA content and increased its association with the p85 subunit of phosphatidylinositol 3‐kinase (PI3K). E2 decreased protein and mRNA content of IR substrate 2 (IRS‐2), while did not change IRS‐2 tyrosine phosphorylation and IRS‐2 association with p85. The increase of IRS‐1/p85 is accompanied by increase of p85 protein and mRNA levels, and by stimulation of protein kinase B (Akt) Ser473 phosphorylation. In contrast, Akt protein and mRNA content were not changed. In summary, although in some aspects cardiac insulin signaling is obviously improved by E2 treatment (increase of p85 mRNA and protein levels, enhancement of IRS‐1/p85 association and Ser473Akt phosphorylation), the observed decrease of IR tyrosine phosphorylation, IRS‐2 protein content, and IRSs mRNA contents, suggest very complex interplay of beneficial and suppressive effects of E2, both genomic and non‐genomic, in regulation of heart insulin signaling. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
75.
We evaluated possible roles of interleukin-8 gene polymorphisms (1633T/C-rs2227543, 251A/T-rs4073) and interleukin-18 gene polymorphisms (-607C/A-rs1946518, -137G/C-rs187238) in the development of diabetic retinopathy (DR) in Caucasians with type 2 diabetes. 271 patients with DR and 113 without diabetic retinopathy were enrolled in this cross-sectional study. We did not observe an association between either interleukin-8 gene polymorphisms (1633T/C, 251A/T) or interleukin-18 gene polymorphisms (-607C/A, -137G/C) and diabetic retinopathy in Caucasians with type 2 diabetes. We did not find statistically significant differences in interleukin-8 serum levels between diabetics with the TT and AA genotype and those with other genotypes. The interleukin-18 serum levels between diabetics with the CC genotype of the -607C/A polymorphism and those with other genotypes (AA, AC) were not significantly different. Moreover, we did not observe a statistically significant effect of the tested polymorphisms of either interleukin-8 or interleukin-18 genes on serum levels in diabetics. In conclusion, our study indicates that the examined polymorphisms of interleukin-8 (1633T/C, 251A/T) and interleukin-18 (-607C/A or the -137G/C) genes are not genetic risk factors for diabetic retinopathy. Therefore, they may not be used as genetic markers for diabetic retinopathy in Caucasians with type 2 diabetes.  相似文献   
76.
Astrocytes have a key role in the clearance and inactivation of histamine in the adult central nervous system, but transporters which mediate histamine uptake into astrocytes have not been fully characterized. We therefore investigated the kinetic and molecular characteristics of histamine uptake into cultured adult rat astrocytes. [(3)H]-histamine was taken up by astrocytes in a temperature-, time- and concentration-dependent manner and was inhibited up to 60-70% by 1mM ouabain or by substitution of NaCl with choline chloride. Specific [(3)H]-histamine uptake, determined as the difference between transport at 37 and 4°C, displayed saturation kinetics with the apparent Michaelis-Menten constant (K(m)) of 141 and 101μM and the apparent maximal uptake rate (V(max)) of 22.5 and 17.8pmol/min/mg protein, as estimated from the Woolf and the Eadie-Hofstee plots, respectively. Since our data suggested the presence of a carrier-operated histamine uptake system, we assessed the possible involvement of the organic cation transporters (OCT) 1, 2 and 3, which have been previously described to play a role in histamine transport in the central nervous system. Low level mRNA expression of all OCT isoforms was detected, but in contrast to rat brain cortex homogenate, where OCT3 was the most prominently expressed OCT isoform, OCT2 mRNA was the predominant OCT species in cultured astrocytes. However, OCT inhibitors corticosterone and decynium 22 (D22) had no effect or only modestly reduced [(3)H]-histamine uptake. Thus, our data indicate that adult rat astrocytes possess an efficient high-capacity, low-affinity carrier-operated histamine uptake system, which does not seem to involve OCTs.  相似文献   
77.
Superficial cell desquamation followed by differentiation of newly exposed superficial cells induces regeneration of the urinary bladder epithelium, urothelium. In the present work, chitosan was evaluated as a new inducer of urothelial cell desquamation, in order to study the regeneration of mouse urothelial cells in vivo. Intravesical application of chitosan dispersion caused complete removal of only the superficial layer of cells within 20 min of treatment. Differentiation of the new superficial layer was followed by the appearance and distribution of three urothelial differentiation markers, tight junction protein ZO1, cytokeratin 20 and the maturation of the apical plasma membrane. The arrangement of ZO1 into continuous lines in individual cells of the intermediate layer was already found after 10 min of chitosan application, when desquamation had just started. The appearance of the apical membrane changed from microvillar to typically scalloped within 20 min of regeneration, while complete arrangement of the cytokeratin 20 network took 60 min. These findings provide a new perspective on the rate of the differentiation process in the urothelium and make chitosan a new and a very controllable tool for studies on urothelial regeneration.  相似文献   
78.
79.
A novel, genetically encoded, ratiometric pH probe (RaVC) was constructed to image and measure intracellular pH in living hyphae of Aspergillus niger. RaVC is a chimeric protein based on the pH-sensitive probe pHluorin, which was partially codon optimized for expression in Aspergillus. Intracellular pH imaging and measurement was performed by simultaneous, dual-excitation confocal ratio imaging. The mean cytoplasmic pH measured was 7.4 to 7.7 based on calibrating RaVC in situ within nigericin-treated hyphae. Pronounced, longitudinal cytoplasmic pH gradients were not observed in the apical 20 μm of actively growing hyphae at the periphery of 18-h-old colonies. The cytoplasmic pH remained unchanged after prolonged growth in buffered medium with pH values between 2.5 or 9.5. Sudden changes in external pH significantly changed cytoplasmic pH by <1.3 pH units, but it returned to its original value within 20 min following treatment. The weak acid and antifungal food preservative sorbic acid caused prolonged, concentration-dependent intracellular acidification. The inhibition of ATPases with N-ethylmaleimide, dicychlohexylcarbodimide, or sodium azide caused the cytoplasmic pH to decrease by <1 pH unit. Treatment with the protonophore carbonyl cyanide m-chlorophenylhydrazone or cyanide p-(trifluoromethoxy) phenylhydrazone reduced the cytoplasmic pH by <1 pH unit. In older hyphae from 32-h-old cultures, RaVC became sequestered within large vacuoles, which were shown to have pH values between 6.2 and 6.5. Overall, our study demonstrates that RaVC is an excellent probe for visualizing and quantifying intracellular pH in living fungal hyphae.Cytoplasmic pH is a physiological parameter that is tightly regulated by a complex interaction of H+ transport, H+-consuming and -producing reactions, and H+ buffering (10, 38). Maintaining pH within a physiological range is very important for protein stability, enzyme and ion channel activity, and many other processes that are required for cell growth, development, and survival (38). It has been proposed that intracellular pH serves as a mechanism by which cells coordinate the regulation of various processes that lack any other common regulating factors and may provide a link between the metabolic state and physiological responses (10).The most reliable measurements of cytoplasmic pH in filamentous fungi in single living hyphae have indicated a pH of ∼7.6. These measurements have been obtained using the ratiometric imaging of a dextran-conjugated, pH-sensitive dye injected into the cytoplasm to avoid sequestration into organelles (34). Changes in external pH were found to cause only small transient changes in the cytoplasmic pH, indicating that hyphae have a tightly regulated intracellular pH homeostatic mechanism. Rigorous quantitative analyses of cytoplasmic pH in growing hyphae and tip-growing plant cells have found no evidence for the existence of pronounced, tip-focused cytoplasmic pH gradients or for such gradients being required for the regulation of tip growth (4, 13, 34). These results contradicted previous reports of cytoplasmic pH gradients in hyphae (2, 25, 40, 41). Changes in cytoplasmic pH have been implicated in regulating protein synthesis, enzyme activities, and fermentation productivity in filamentous fungi (24) and cell cycle progression in fission yeast (26).The recent sequencing and analysis of the genome of the filamentous fungus Aspergillus niger has revealed a complex machinery for H+ transport that will play important roles in pH homeostasis and signaling (35). Key components of this machinery are five plasma membrane P-type H+-ATPases; one vacuolar V-type H+-ATPase; one mitochondrial membrane F0F1-ATP synthase; five K+, Na+/H+ antiporters; and six Ca+/H+ antiporters (5).Previous methods of measuring intracellular pH in filamentous fungi commonly have been fraught with problems. Loading hyphae with dextran-conjugated pH dyes or using pH-sensitive microelectrodes requires cells to be physically impaled with micropipettes or microelectrodes (42) and is technically demanding to perform without harming the cells under study (12, 33). Intracellular pH measurements with free pH-sensitive dyes often suffer from problems associated with dye loading and dye sequestration within organelles (21, 33). There are also reports on the use of radiolabeled membrane-permeable acids (3) and 31P nuclear magnetic resonance (NMR) for intracellular pH measurement (18, 19, 20) in fungi. However, both of these methods require extensive sample manipulation and do not allow the imaging of intracellular pH in single living cells. Ideal probes for imaging and measuring intracellular pH in single living cells should possess several key properties. These include having a high selectivity for H+ over other ions present; allowing the accurate quantification of intracellular pH; providing high temporal and spatial resolution; not interfering with normal physiological activities or cellular responses; exhibiting low cell toxicity; having a high signal-to-noise ratio; and having the possibility of being targeted to specific organelles.A novel approach for noninvasive intracellular pH measurements has been the development of a recombinant pH-sensitive probe based on mutated green fluorescent protein (GFP) (6, 17, 29, 43). Miesenbock et al. (29) introduced a ratiometric pH probe of this type, which they named pHluorin. Problems normally encountered with single-wavelength dyes are reduced by using ratiometric probes. These problems include distinguishing between differences in intracellular pH and variations in dye brightness due to a variable intracellular dye concentration, dye photobleaching, or dye leakage from cells (33). Thus, pHluorin is very suitable as a noninvasive probe in living cells for imaging and measuring intracellular pH (26, 29, 43), but its use with filamentous fungi has not been reported previously.The aims of this study were to (i) develop an improved version of the pHluorin probe (which we call RaVC) for intracellular pH imaging in filamentous fungi; (ii) obtain measurements of cytoplasmic pH in hyphae of A. niger expressing RaVC by using confocal ratio imaging; (iii) confirm or disprove that a pronounced, tip-focused, cytoplasmic pH gradient is absent in growing hyphae of A. niger; and (iv) assess the effects of changing the external pH, and of treating hyphae with known pH modulators, on intracellular pH homeostasis in A. niger.  相似文献   
80.
It is indicated that nonhomogeneous lateral distribution of membrane attached and flexible rod-like proteins (MRPs) may stabilize nanotubular membrane protrusions. We have shown that curvature induced accumulation of MRPs in the nanotubular membrane protrusion and the corresponding reduction of the membrane free energy are possible if the decrease of the deviatoric free energy of MRPs in the nanotubular protrusions is large enough to overcome the increase of the free energy due to decrease of configurational entropy in the process of lateral sorting of MRPs. The decrease of isotropic curvature energy of MRPs in the region of membrane protrusion is usually not sufficient for substantial MRPs sorting and consequent stabilization of the nanotubular membrane protrusions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号