首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   810篇
  免费   43篇
  国内免费   1篇
  2023年   11篇
  2022年   22篇
  2021年   42篇
  2020年   37篇
  2019年   70篇
  2018年   50篇
  2017年   33篇
  2016年   56篇
  2015年   48篇
  2014年   55篇
  2013年   66篇
  2012年   68篇
  2011年   54篇
  2010年   37篇
  2009年   25篇
  2008年   32篇
  2007年   26篇
  2006年   25篇
  2005年   16篇
  2004年   21篇
  2003年   9篇
  2002年   10篇
  2001年   2篇
  2000年   2篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1995年   4篇
  1994年   1篇
  1993年   3篇
  1992年   4篇
  1989年   2篇
  1986年   1篇
  1985年   1篇
  1982年   3篇
  1979年   2篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
  1974年   1篇
  1973年   2篇
  1968年   1篇
  1966年   1篇
排序方式: 共有854条查询结果,搜索用时 656 毫秒
231.
Plant Cell, Tissue and Organ Culture (PCTOC) - A correction to this paper has been published: https://doi.org/10.1007/s11240-021-02104-4  相似文献   
232.
Terminal deoxynucleotidyl transferase (TdT) enzyme plays an integral part in the V(D)J recombination, allowing for the huge diversity in expression of immunoglobulins and T-cell receptors within lymphocytes, through their unique ability to incorporate single nucleotides into oligonucleotides without the need of a template. The role played by TdT in lymphocytes precursors found in early vertebrates is not known. In this paper, we demonstrated a new screening method that utilises TdT to form libraries of variable sized (vsDNA) libraries of polynucleotides that displayed binding towards protein targets. The extent of binding and size distribution of each vsDNA library towards their respective protein target can be controlled through the alteration of different reaction conditions such as time of reaction, nucleotide ratio and initiator concentration raising the possibility for the rational design of aptamers prior to screening. The new approach, allows for the screening of aptamers based on size as well as sequence in a single round, which minimises PCR bias. We converted the protein bound sequences to dsDNA using rapid amplification of variable ends assays (RAVE) and sequenced them using next generation sequencing. The resultant aptamers demonstrated low nanomolar binding and high selectivity towards their respective targets.  相似文献   
233.
Coronavirus disease 2019 (COVID-19) is the seventh member of the bat severe acute respiratory syndrome family. COVID-19 can fuse their envelopes with the host cell membranes and deliver their genetic material. COVID-19 attacks the respiratory system and stimulates the host inflammatory responses, enhances the recruitment of immune cells, and promotes angiotensin-converting enzyme 2 activities. Patients with confirmed COVID-19 may have experienced fever, dry cough, headache, dyspnea, acute kidney injury, acute respiratory distress syndrome, and acute heart injury. Several strategies such as oxygen therapy, ventilation, antibiotic or antiviral therapy, and renal replacement therapy are commonly used to decrease COVID-19-associated mortality. However, these approaches may not be good treatment options. Therefore, the search for an alternative-novel therapy is urgently important to prevent the disease progression. Recently, microRNAs (miRNAs) have emerged as a promising strategy for COVID-19. The design of oligonucleotide against the genetic material of COVID-19 might suppress virus RNA translation. Several previous studies have shown that host miRNAs play an antiviral role and improve the treatment of patients with COVID-19. miRNAs by binding to the 3′-untranslated region (UTR) or 5′-UTR of viral RNA play an important role in COVID-19-host interplay and viral replication. miRNAs interact with multiple pathways and reduce inflammatory biomarkers, thrombi formation, and tissue damage to accelerate the patient outcome. The information in this review provides a summary of the current clinical application of miRNAs for the treatments of patients with COVID-19.  相似文献   
234.
This study reports the in vitro anticoagulation activity of acetonic extract (AE) of 42 lichen species and the identification of potential bioavailable anticoagulant compounds from Umbilicaria decussata as a competent anticoagulant lichen species. Lichens’ AEs were evaluated for their anticoagulant activity by monitoring activated partial thromboplastin time (APTT) and prothrombin time (PT) assays. A strong, positive correlation was observed between total phenolics concentration (TPC) of species and blood coagulation parameters. U. decussata was the only species with the longest clotting time in both APTT and PT assays. The research was moved forward by performing in vivo assays using rats. The results corroborated the dose-dependent impact of U. decussata’s AE on rats’ clotting time. Major secondary metabolites of U. decussata and their plasma-related bioavailability were also investigated using LC-ESI-MS/MS. Atranol, orsellinic acid, D-mannitol, lecanoric acid, and evernic acid were detected as possible bioavailable anticoagulants of U. decussata. Our findings suggest that U. decussata might be a potential anticoagulant lichen species that can be used for the prevention or treatment of coagulation-related issues such as cardiovascular diseases (CVDs).  相似文献   
235.
Regarding discrepancies that exist among different studies which have tried to clarify critical factors in human Th17 cell differentiation, the aim of this study was to identify the best condition for human Th17 differentiation and to clarify the possible role of TGF-β in differentiation of these cells. Naïve CD4+ T cells were isolated from cord blood samples and cultured either in X-VIVO 15 serum-free medium or RPMI 1640 containing 10% FBS. Purified cells were treated with different combinations of polarizing cytokines (TGF-β, IL-1β, IL-6, IL-23 and IL-21) followed by analysis of the expression of characteristic genes and their relevant cytokines by real-time quantitative RT-PCR and ELISA method, respectively. Our data indicate that a combination of TGF-β plus IL-6 and IL-23 cytokines in X-VIVO 15 serum-free medium could be applied as the best condition for developing human Th17 cells in compare with other studied cytokine treatments. It is shown that TGF-β could be considered as a positive regulator for human Th17 cell differentiation only if applied in average concentrations. Interestingly, polarizing treatments in absence of TGF-β, induced double-secreting Th17 cells which co-express IL-17 and IFN-γ whereas polarization in presence of TGF-β-induced single-secreting (only IL-17 expressing) Th17 cells.  相似文献   
236.
237.
238.
DNA barcoding is based on the use of short DNA sequences to provide taxonomic tags for rapid, efficient identification of biological specimens. Currently, reference databases are being compiled. In the future, it will be important to facilitate access to these databases, especially for nonspecialist users. The method described here provides a rapid, web-based, user-friendly link between the DNA sequence from an unidentified biological specimen and various types of biological information, including the species name. Specifically, we use a customized, Google-type search algorithm to quickly match an unknown DNA sequence to a list of verified DNA barcodes in the reference database. In addition to retrieving the species name, our web tool also provides automatic links to a range of other information about that species. As the DNA barcode database becomes more populated, it will become increasingly important for the broader user community to be able to exploit it for the rapid identification of unknown specimens and to easily obtain relevant biological information about these species. The application presented here meets that need.  相似文献   
239.
Drought is one of the major factors limiting the yield of wheat (Triticum aestivum L.) particularly during grain filling. Under terminal drought condition, remobilization of pre-stored carbohydrates in wheat stem to grain has a major contribution in yield. To determine the molecular mechanism of stem reserve utilization under drought condition, we compared stem proteome patterns of two contrasting wheat landraces (N49 and N14) under a progressive post-anthesis drought stress, during which period N49 peduncle showed remarkably higher stem reserves remobilization efficiency compared to N14. Out of 830 protein spots reproducibly detected and analyzed on two-dimensional electrophoresis gels, 135 spots showed significant changes in at least one landrace. The highest number of differentially expressed proteins was observed in landrace N49 at 20days after anthesis when active remobilization of dry matter was observed, suggesting a possible involvement of these proteins in effective stem reserve remobilization of N49. The identification of 82 of differentially expressed proteins using mass spectrometry revealed a coordinated expression of proteins involved in leaf senescence, oxidative stress defense, signal transduction, metabolisms and photosynthesis which might enable N49 to efficiently remobilized its stem reserves compared to N14. The up-regulation of several senescence-associated proteins and breakdown of photosynthetic proteins in N49 might reflect the fact that N49 increased carbon remobilization from the stem to the grains by enhancing senescence. Furthermore, the up-regulation of several oxidative stress defense proteins in N49 might suggest a more effective protection against oxidative stress during senescence in order to protect stem cells from premature cell death. Our results suggest that wheat plant might response to soil drying by efficiently remobilize assimilates from stem to grain through coordinated gene expression.  相似文献   
240.
The aim of this study was to assess whether a cell permeable superoxide dismutase agent such as MnTE, can further improve the quality of frozen/thawed semen sample using a commercially optimized sperm cryopreservation media (Bioxcell). Bioxcell was supplemented with different concentration of MnTE. Sperm membrane integrity, motility, viability and acrosomal status were assessed after freezing. Optimized concentration of MnTE was defined and used to assess fertilization and developmental potential. 0.1 μM MnTE significantly improved membrane integrity while 0.01 μM MnTE significantly improved acrosomal integrity post thawing. Addition of 0.01 μM MnTE also improved blastocyst formation rate. Supplementation of commercially optimized cryopreservation media with MnTE further improves the quality of goat frozen semen sample and may have important consequence of future embryo development. This effect may be attributed to cell permeable behavior of this antioxidant which may protect sperm genome from ROS-induced DNA damage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号