首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   802篇
  免费   42篇
  国内免费   1篇
  845篇
  2024年   1篇
  2023年   12篇
  2022年   29篇
  2021年   41篇
  2020年   36篇
  2019年   71篇
  2018年   49篇
  2017年   30篇
  2016年   53篇
  2015年   45篇
  2014年   54篇
  2013年   64篇
  2012年   67篇
  2011年   54篇
  2010年   37篇
  2009年   26篇
  2008年   31篇
  2007年   26篇
  2006年   25篇
  2005年   17篇
  2004年   21篇
  2003年   9篇
  2002年   11篇
  2001年   2篇
  2000年   1篇
  1999年   2篇
  1997年   1篇
  1996年   2篇
  1995年   4篇
  1994年   1篇
  1993年   3篇
  1992年   4篇
  1989年   2篇
  1986年   1篇
  1982年   3篇
  1979年   2篇
  1978年   2篇
  1976年   1篇
  1974年   1篇
  1973年   2篇
  1968年   1篇
  1966年   1篇
排序方式: 共有845条查询结果,搜索用时 62 毫秒
41.
42.

Aim

The aim of this study is to evaluate the accuracy of the inverse square law (ISL) method for determining location of virtual electron source (SVir) in Siemens Primus linac.

Background

So far, different experimental methods have presented for determining virtual and effective electron source location such as Full Width at Half Maximum (FWHM), Multiple Coulomb Scattering (MCS), and Multi Pinhole Camera (MPC) and Inverse Square Law (ISL) methods. Among these methods, Inverse Square Law is the most common used method.

Materials and methods

Firstly, Siemens Primus linac was simulated using MCNPX Monte Carlo code. Then, by using dose profiles obtained from the Monte Carlo simulations, the location of SVir was calculated for 5, 7, 8, 10, 12 and 14 MeV electron energies and 10 cm × 10 cm, 15 cm × 15 cm, 20 cm × 20 cm and 25 cm × 25 cm field sizes. Additionally, the location of SVir was obtained by the ISL method for the mentioned electron energies and field sizes. Finally, the values obtained by the ISL method were compared to the values resulted from Monte Carlo simulation.

Results

The findings indicate that the calculated SVir values depend on beam energy and field size. For a specific energy, with increase of field size, the distance of SVir increases for most cases. Furthermore, for a special applicator, with increase of electron energy, the distance of SVir increases for most cases. The variation of SVir values versus change of field size in a certain energy is more than the variation of SVir values versus change of electron energy in a certain field size.

Conclusion

According to the results, it is concluded that the ISL method can be considered as a good method for calculation of SVir location in higher electron energies (14 MeV).  相似文献   
43.
44.
Salsola kali pollen is a common cause of pollinosis during summer and early fall in desert and semi-desert regions. The aim of this study was the identification and characterization of Sal k 3, a new allergen from S. kali pollen. S. kali pollen extract was fractionated by SDS-PAGE and the allergenic profile was determined by IgE-immunoblotting using twelve S. kali allergic patients. Protein identification was carried out by the means of mass spectrometry. Using degenerated primers, two DNA fragments encoding N- and C-terminal domain of Sal k 3 were amplified by PCR, then cloned into the PTZ57R/T vector and sequenced. The open reading frame of Sal k 3 fragments were subcloned in the pET-32b(+) vector, expressed in E. coli, and purified by Ni2+ affinity chromatography. The IgE-binding capacity of rSal k 3 fragments was then studied by IgE-immunoblotting, inhibition assays, and skin prick tests. A 45-kDa allergen was identified as a fragment of the cobalamin-independent methionine synthase (MetE) by mass spectrometry and was detected in the sera of 8/12 (66.6%) of S. kali allergic patients. Moreover, inhibition assays demonstrated that the purified rSal k 3 fragments were similar to their counterparts in the crude extract. Sal k 3 represents a new allergen of S. kali pollen and seems to be an important allergenic compound in S. kali pollen.  相似文献   
45.
The present work was designed to investigate the potential protective effects of post-ischemic treatment with aminoguanidine (AG) on sciatic nerve ischemia/reperfusion (I/R) injury in rat. Seventy-two rats were divided into 12 groups (n = 6). We used ischemia model in these groups by occluding the right common iliac and femoral arteries for 3 h with a silk suture 6-0 using slipknot technique. Treatment groups (2, 4, 6, 8, 10, and 12) received 150 mg/kg AG intraperitoneally 24 h after induction of ischemia. After certain time intervals of reperfusion (2, 4, 7, 14, and 28 days), the function of the hind limb was assessed using behavioral scores based on gait, racing reflex, toe spread, pinch sensitivity, paw position, and grasp. After euthanasia, sciatic nerves were removed at the end of reperfusion times and sections were cut at 5 μm, then were stained for light microscopy studies and graded for ischemic fiber degeneration (IFD), edema, and apoptosis. Maximal behavioral deficit occurred at 7 days of reperfusion. The comparison of behavioral score pertaining to the control and AG groups revealed significant differences and showed also a better time course in recovery (P < 0.05). Other than 3 and 4 groups, the amount of edema in AG treatment groups showed significant differences compared with control groups (P < 0.05). IFD was also significantly decreased in the AG treatment groups than controls. Most importantly, I/R-induced apoptosis were improved significantly on the 4th, 7th, and 14th days of reperfusion in AG-treated groups compared to controls. In conclusion, our findings suggest that post-ischemic administration of AG exhibits protective effect against sciatic nerve I/R injury.  相似文献   
46.
Theranostic nanoparticles (NPs) are promising for opening new windows toward personalized disease management. Using a single particle capable of both diagnosis and drug delivery, is the major benefit of such particles. In the present study, chitosan NPs were used as a dual action carrier for doxorubicin (DOX; chemotherapeutic agent) and superparamagnetic iron oxide nanoparticles (SPIONs; imaging agent). SPIONs and DOX were loaded at different concentrations within poly-l -arginine-chitosan-triphosphate matrix (ACSD) using the ionic gelation method. NPs’ size were in the range of 184.33 ± 4.4 nm. Drug release analysis of DOX loaded NPs (NP-DOX) showed burst release at pH 5.5 (as in tumor environment) and slow release at pH 7.4 (physiological condition), demonstrating pH-sensitive drug release profile. NP-DOX internalization was confirmed by flowcytometry and fluorescent microscopy. Uptake process results were corroborated by accumulation of drug in the intracellular space. Iron content was evaluated by inductively coupled plasma and prussian blue staining. In vitro magnetic resonance imaging (MRI) showed a decline in T 2 relaxation times by increasing iron concentration. MRI analysis also confirmed uptake of NPs at the optimum concentration in C6 glioma cells. In conclusion, ACSD NPs could be utilized as a promising theranostic formulation for both diagnosis and treatment of glioblastoma.  相似文献   
47.
Hepatocellular carcinoma (HCC) is known as one of the major health problems worldwide. Pathological analysis indicated that a variety of risk factors including genetical (i.e., alteration of tumor suppressors and oncogenes) and environmental factors (i.e., viruses) are involved in beginning and development of HCC. The understanding of these risk factors could guide scientists and clinicians to design effective therapeutic options in HCC treatment. Various viruses such as hepatitis B virus (HBV) and hepatitis C virus (HCV) via targeting several cellular and molecular pathways involved in HCC pathogenesis. Among various cellular and molecular targets, microRNAs (miRNAs) have appeared as key players in HCC progression. miRNAs are short noncoding RNAs which could play important roles as oncogenes or tumor suppressors in several malignancies such as HCC. Deregulation of many miRNAs (i.e., miR-222, miR-25, miR-92a, miR-1, let-7f, and miR-21) could be associated with different stages of HCC. Besides miRNAs, exosomes are other particles which are involved in HCC pathogenesis via targeting different cargos, such as DNAs, RNAs, miRNAs, and proteins. In this review, we summarize the current knowledge of the role of miRNAs and exosomes as important players in HCC pathogenesis. Moreover, we highlighted HCV- and HBV-related miRNAs which led to HCC progression.  相似文献   
48.
High-density lipoprotein (HDL) function rather than level may better predict cardiovascular disease (CVD). However, the contribution of the impaired antioxidant function of HDL that is associated with increased HDL lipid peroxidation (HDLox) to the development of clinical CVD remains unclear. We have investigated the association between serum HDLox with incident CVD outcomes in Mashhad cohort. Three-hundred and thirty individuals who had a median follow-up period of 7 years were recruited as part of the cohort. The primary end point was cardiovascular event, including myocardial infarction, stable angina, unstable angina, or coronary revascularization. In both univariate/multivariate analyses adjusted for traditional CVD risk factors, HDLox was an independent risk factor for CVD (odds ratio, 1.62; 95% confidence interval, 1.41–1.86; p < 0.001). For every increase in HDLox by 0.1 unit, there was an increase in CVD risk by 1.62-fold. In an adjusted analysis, there was a >2.5-fold increase in cardiovascular risk in individuals with HDLox higher than cutoff point of 1.06 compared to those with lower scores, suggesting HDLox > 1.06 is related to the impaired HDL oxidant function and in turn exposed to elevated risk of CVD outcomes (hazard ratio, 2.72; 95% CI, 1.88–3.94). Higher HDLox is a surrogate measure of reduced HDL antioxidant function that positively associated with cardiovascular events in a population-based cohort.  相似文献   
49.
Molecular Biology Reports - Metabolic syndrome (MetS) is associated with a pro-inflammatory state and endothelial dysfunction that places subjects with MetS at a higher risk of atherosclerosis....  相似文献   
50.
Plant-based methods such as rhizodegradation are very promising for the remediation of petroleum-contaminated soils. Associations of plants with endophytes can further enhance their phytoremediation potential. In this study, a rhizobox experiment was conducted to investigate whether inoculation with the root-colonizing fungus Piriformospora indica could further enhance the degradation of petroleum hydrocarbons in the root zone of maize (Zea mays L.). The rhizoboxes were subdivided into compartments in accordance with distance from the plants. After filling the boxes with soil from a petroleum-contaminated site, seedlings that had either been inoculated with P. indica or not were grown in the middle compartments of the rhizoboxes and grown for 64 days. A plant-free treatment was included for control. The presence of roots strongly increased the counts of total and petroleum-degrading soil bacteria, respiration, dehydrogenase activity, water-soluble phenols and petroleum degradation. All these effects were also found in the soil adjacent to the middle compartments of the rhizoboxes, but strongly decreased further away from it. Inoculation with P. indica further enhanced all the recorded parameters without changing the spatial pattern of the effects. Inoculated plants also produced around 40% more root and shoot biomass than noninoculated plants and had greener leaves. Together, the results indicate that the treatment effects on the recorded soil microbial and biochemical parameters including petroleum hydrocarbon degradation were primarily due to increased root exudation. Irrespectively of this, they show that maize can be used to accelerate the rhizodegradation of petroleum hydrocarbons in soil and that inoculation with P. indica can substantially enhance the phytoremediation performance of maize.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号