首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1779篇
  免费   96篇
  国内免费   4篇
  1879篇
  2024年   6篇
  2023年   21篇
  2022年   57篇
  2021年   115篇
  2020年   41篇
  2019年   56篇
  2018年   78篇
  2017年   55篇
  2016年   58篇
  2015年   81篇
  2014年   104篇
  2013年   125篇
  2012年   117篇
  2011年   129篇
  2010年   50篇
  2009年   50篇
  2008年   75篇
  2007年   58篇
  2006年   71篇
  2005年   48篇
  2004年   29篇
  2003年   38篇
  2002年   28篇
  2001年   30篇
  2000年   29篇
  1999年   28篇
  1998年   8篇
  1997年   8篇
  1994年   18篇
  1993年   10篇
  1992年   17篇
  1991年   16篇
  1990年   20篇
  1989年   18篇
  1988年   12篇
  1987年   17篇
  1986年   14篇
  1985年   21篇
  1984年   12篇
  1983年   9篇
  1982年   9篇
  1981年   7篇
  1979年   6篇
  1977年   7篇
  1974年   8篇
  1973年   6篇
  1972年   8篇
  1971年   8篇
  1970年   7篇
  1966年   5篇
排序方式: 共有1879条查询结果,搜索用时 15 毫秒
991.
Activation-induced cell death (AICD) plays a key role in the homeostasis of the immune system. Autoreactive T cells are eliminated through AICD both from the thymus and periphery. In this study, we show that NOD peripheral T cells, especially CD8(+) T cells, display a decreased susceptibility to anti-CD3-induced AICD in vivo compared with T cells from diabetes-resistant B6, nonobese diabetes-resistant, and NOD.B6Idd4 mice. The susceptibility of NOD CD8(+) T cells to AICD varies in an age- and dose-dependent manner upon stimulation in vivo with either a mitogenic or nonmitogenic anti-CD3. NOD T cells preactivated by anti-CD3 in vivo are less susceptible than B6 T cells to TCR-induced AICD. Treatment of NOD mice with a mitogenic anti-CD3 depletes CD4(+)CD25(-)CD62L(+) but not CD4(+)CD25(+)CD62L(+) T cells, thereby resulting in an increase of the latter subset in the spleen. Treatment with a nonmitogenic anti-CD3 mAb delays the onset of T1D in 8.3 TCR transgenic NOD mice. These results demonstrate that the capacity of anti-CD3 to protect NOD mice from T1D correlates with its ability to perturb T cell homeostasis by inducing CD8(+) T cell AICD and increasing the number of CD4(+)CD25(+)CD62L(+) T cells in the periphery.  相似文献   
992.
993.
We have previously described apolipoprotein B (apoB)-dependent and -independent cholesterol absorption pathways and the role of microsomal triglyceride transfer protein (MTP) and ATP-binding cassette transporter A1 (ABCA1) in these pathways. To assess the contribution of these pathways to cholesterol absorption and to determine whether there are other pathways, we generated mice that lack MTP and ABCA1, individually and in combination, in the intestine. Intestinal deletions of Mttp and Abca1 decreased plasma cholesterol concentrations by 45 and 24%, respectively, whereas their combined deletion reduced it by 59%. Acute cholesterol absorption was reduced by 28% in the absence of ABCA1, and it was reduced by 92–95% when MTP was deleted in the intestine alone or together with ABCA1. MTP deficiency significantly reduced triglyceride absorption, although ABCA1 deficiency had no effect. ABCA1 deficiency did not affect cellular lipids, but Mttp deficiency significantly increased intestinal levels of triglycerides and free fatty acids. Accumulation of intestinal free fatty acids, but not triglycerides, in Mttp-deficient intestines was prevented when mice were also deficient in intestinal ABCA1. Combined deficiency of these genes increased intestinal fatty acid oxidation as a consequence of increased expression of peroxisome proliferator-activated receptor-γ (PPARγ) and carnitine palmitoyltransferase 1α (CPT1α). These studies show that intestinal MTP and ABCA1 are critical for lipid absorption and are the main determinants of plasma and intestinal lipid levels. Reducing their activities might lower plasma lipid concentrations.  相似文献   
994.
Chitinase enzymes hydrolyse the polysaccharide chitin, an abundant architectural component in invertebrates and fungi. Most mammals encode at least two endochitinases (CHIT1 and CHIA/AMCase), as well as several homologues encoding catalytically inactive chitinase-like proteins or chilectins (all GH18 family proteins). It is becoming increasingly apparent that chitinases and chilectins play an important role in inflammation and their over-expression is correlated with numerous pathological conditions. We have conducted a detailed phylogenomic study of this gene family in order to understand its evolutionary history and the selection forces at work. The family has undergone extensive expansion, initiating with a duplication event at the root of the vertebrate tree generating the ancestors of CHIT1 and CHIA. Our analyses indicate that two further duplications of ancestral CHIA predate the divergence of bony fishes, one leading to a newly identified paralogous group (we have termed CHIO). In fish these sequences fall into two clades bearing the hallmarks of the teleost-specific genome duplication (referred to as 3R). In tetrapods, additional duplications predate and postdate the amphibian/mammalian split and relics of some exist as pseudogenes in the human genome. Expansion and selection of chilectins is pronounced in mammals and CHI3L1 (with a proposed function in immunity) is found in most mammals but not other vertebrates, while CHI3L2 is also evident in reptiles. Notably oviductin (OVGP1) became basic and gained a glycosylated tail with its evolving role in the mammalian reproductive system. In each case, retention of the sugar-binding barrel structure has constrained positive selection to limited sites.  相似文献   
995.
Forty isolates of Pasteurella multocida from healthy (17 isolates) and diseased (23 isolates) rabbits were assayed for the presence of plasmids in seeking to determine whether any correlation exists between the presence of plasmids and health status, sensitivity to antimicrobial agents, capsular and somatic type, and the anatomic site of isolation. Six isolates were found harboring plasmids. A similar ladder pattern ranging from 18 to 3 megadalton (Mda) were found in three isolates recovered from diseased rabbits. One band of molecular weight 6.6 Mda was shared by four of five (4/5) isolates from the diseased rabbits. No correlation was found between the presence of the common plasmids and serotype, resistance to antimicrobial agents, and anatomic sites from which the bacteria were cultured. Random amplification polymorphic DNA was applied to subtype all the isolates of P. multocida. Two single primers were tested for their abilities to generate individual fingerprints by using PCR. Primer 1 grouped the isolates into 7 profiles, and primer 2 grouped them into 15. Random amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR) results show the presence of a wide heterogeneity within P. multocida isolates. Therefore RAPD-PCR is an efficient technique to detect the DNA polymorphism and could be used to discriminate P. multocida of rabbit isolates together with serologic typing.  相似文献   
996.
Patients with chronic helminth infections, despite having abundant basophils and mast cells specifically sensitized with antiparasite IgE and often exposed repeatedly to parasite Ag, rarely manifest allergic symptoms. This control of clinical allergic reactivity likely results from Ag-specific IgG "blocking antibodies" shown previously to be abundant in the sera of such patients. In the present study we used two approaches to determine in which of the four IgG subclasses this blocking activity was localized. First, specific antifilarial antibodies of each of the four IgG subclasses were quantified in the sera of 28 patients with Bancroftian filariasis and correlated with the levels of blocking activity in these sera (determined by histamine release assays). A significant correlation with blocking activity was seen only for antibodies of the IgG4 subclass, and, indeed, the correlation was especially strong in the group of totally asymptomatic patients (but with microfilariae circulating in the blood) in whom blocking antibody levels were highest. Interestingly, however, if the analysis excluded these asymptomatic microfilaremic patients and focused instead on those with lymphatic inflammatory pathology (who had relatively low levels of both serum blocking activity and specific IgG4 antibodies), then the small amount of blocking activity found in these sera correlated only with the levels of IgG1 subclass antibodies. The second approach utilized selective depletion of IgG4 (by anti-IgG4 affinity columns) from the sera of three microfilaremic patients with high levels of blocking activity and demonstrated clearly that removal of IgG4 abolished the majority of the blocking activity in these sera (53, 78, and 81%). These two sets of findings demonstrate a predominant role for specific IgG4 antibodies in blocking IgE-mediated allergic responses to the parasite Ag in vitro, but they also indicate that in some situations IgG1 antibodies can block such reactions. Furthermore, the correlation demonstrated between patients' clinical presentations and the levels of both their specific IgG4 antibodies and serum blocking activity suggests that these antibodies play a similar role in vivo as well.  相似文献   
997.
Imran M  Mahmood S  Hussain R  Abid NB  Lone KP 《Gene》2012,492(1):186-194
Prion diseases are neurodegenerative conditions caused by misfolding of a normal host-encoded prion protein (PrPC) into pathogenic scrapie prion protein (PrPSc). In human prion diseases, the M129V prion protein polymorphism is known to confer susceptibility to the disease, determines PrPSc conformation and alters clinicopathological phenotypes. To date, all clinicopathologically confirmed cases of a variant form of Cruetzfeldt-Jacob disease (vCJD) have been 129MM homozygotes. There is also predominance of 129MM homozygotes in sporadic CJD (sCJD). No information regarding prion disorders is available from Pakistan. Although only invasive procedures like brain biopsy can confirm the diagnosis of prion disorders, testing a corresponding human population for variation in the prion protein gene (PRNP) may provide some insights into the presence of these disorders in a locality. The current study therefore aimed at exploring the genetic susceptibility of Pakistani population to CJD. A total of 909 unrelated individuals including 221 hemophiliacs representing all 4 major provinces of Pakistan were screened for M129V polymorphism and insertions or deletions of octapeptide repeats (OPRIs/OPRDs) using Polymerase Chain Reaction coupled with Restriction Fragment Length Polymorphism (PCR-RFLP). Concordance of the results of some PCR-RFLP reactions was also confirmed by dideoxy automated Sanger sequencing. The frequencies of M129V alleles (129M and 129V) and genotypes (129MM, 129MV and 129VV) were found in all 909 individuals to be 0.7101, 0.2899, 0.5270, 0.3663 and 0.1067, respectively. Deletion of 1 octapeptide repeat (1-OPRD) was detected in heterozygous state in PRNP of 10 individuals and in homozygous state in 1 individual. An insertion of 3 octapeptide repeats (3-OPRI) was found in 1 individual and an insertion of 1 octapeptide repeat (1-OPRI) in two individuals. Both 3-OPRI and 1-OPRI were present in heterozygous state and were linked to 129M allele. There were no significant χ2 differences between M129V allelic and genotypic frequencies of healthy individuals and hemophiliacs. However, M129V allelic and genotypic frequencies differed significantly between Pakistani population and East Asian and Western populations. Non-significant χ2 differences between M129V frequencies of healthy individuals and hemophiliacs suggest that individuals manifesting single gene disorders may provide naturally randomized samples for studies aiming at surveying the genetic variation. The combined excess of 129MM and 129VV homozygosity and the presence of 3-OPRI in 1 individual imply that Pakistani population is susceptible to prion disorders. Cases of prion disorders may exist in Pakistan, albeit at lower annual prevalence than other countries where life expectancy is greater than 65 years.  相似文献   
998.
The endoplasmic reticulum (ER) of eukaryotic cells is involved in the synthesis and processing of proteins and lipids in the secretory pathway. These processing events that proteins undergo in the ER may present major limiting steps for recombinant protein production. Increased protein synthesis, accumulation of improperly processed or mis-folded protein can induce ER stress. To cope with ER stress, the ER has quality control mechanisms, such as the unfolded protein response (UPR) and ER-associated degradation to restore homeostasis. ER stress and UPR activation trigger multiple physiological cellular changes. Here we review cellular mechanisms that cope with ER stress and illustrate how this knowledge can be applied to increase the efficiency of recombinant protein expression.  相似文献   
999.
Obesity, genetic polymorphisms of xenobiotic metabolic pathway, hypermethylation of tumor suppressor genes, and hypomethylation of proapoptotic genes are known to be independent risk factors for breast cancer. The objective of this study is to evaluate the combined effect of these environmental, genetic, and epigenetic risk factors on the susceptibility to breast cancer. PCR–RFLP and multiplex PCR were used for the genetic analysis of six variants of xenobiotic metabolic pathway. Methylation-specific PCR was used for the epigenetic analysis of four genetic loci. Multifactor dimensionality reduction analysis revealed a significant interaction between the body mass index (BMI) and catechol-O-methyl transferase H108L variant alone or in combination with cytochrome P450 (CYP) 1A1m1 variant. Women with “Luminal A” breast cancer phenotype had higher BMI compared to other phenotypes and healthy controls. There was no association between the BMI and tumor grade. The post-menopausal obese women exhibited lower glutathione levels. BMI showed a positive association with the methylation of extracellular superoxide dismutase (r = 0.21, p < 0.05), Ras-association (RalGDS/AF-6) domain family member 1 (RASSF1A) (r = 0.31, p < 0.001), and breast cancer type 1 susceptibility protein (r = 0.19, p < 0.05); and inverse association with methylation of BNIP3 (r = ?0.48, p < 0.0001). To conclude based on these results, obesity increases the breast cancer susceptibility by two possible mechanisms: (i) by interacting with xenobiotic genetic polymorphisms in inducing increased oxidative DNA damage and (ii) by altering the methylome of several tumor suppressor genes.  相似文献   
1000.
Insulin signaling in osteoblasts regulates global energy balance by stimulating the production of osteocalcin, a bone-derived protein that promotes insulin production and action. To identify the signaling pathways in osteoblasts that mediate insulin''s effects on bone and energy metabolism, we examined the function of the tuberous sclerosis 2 (Tsc2) protein, a key target important in coordinating nutrient signaling. Here, we show that loss of Tsc2 in osteoblasts constitutively activates mTOR and destabilizes Irs1, causing osteoblasts to differentiate poorly and become resistant to insulin. Young Tsc2 mutant mice demonstrate hypoglycemia with increased levels of insulin and undercarboxylated osteocalcin. However, with age, Tsc2 mutants develop metabolic features similar to mice lacking the insulin receptor in the osteoblast, including peripheral adiposity, hyperglycemia, and decreased pancreatic β cell mass. These metabolic abnormalities appear to result from chronic elevations in undercarboxylated osteocalcin that lead to downregulation of the osteocalcin receptor and desensitization of the β cell to this hormone. Removal of a single mTOR allele from the Tsc2 mutant mice largely normalizes the bone and metabolic abnormalities. Together, these findings suggest that Tsc2 serves as a key checkpoint in the osteoblast that is required for proper insulin signaling and acts to ensure normal bone acquisition and energy homeostasis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号