首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1779篇
  免费   96篇
  国内免费   4篇
  1879篇
  2024年   6篇
  2023年   21篇
  2022年   57篇
  2021年   115篇
  2020年   41篇
  2019年   56篇
  2018年   78篇
  2017年   55篇
  2016年   58篇
  2015年   81篇
  2014年   104篇
  2013年   125篇
  2012年   117篇
  2011年   129篇
  2010年   50篇
  2009年   50篇
  2008年   75篇
  2007年   58篇
  2006年   71篇
  2005年   48篇
  2004年   29篇
  2003年   38篇
  2002年   28篇
  2001年   30篇
  2000年   29篇
  1999年   28篇
  1998年   8篇
  1997年   8篇
  1994年   18篇
  1993年   10篇
  1992年   17篇
  1991年   16篇
  1990年   20篇
  1989年   18篇
  1988年   12篇
  1987年   17篇
  1986年   14篇
  1985年   21篇
  1984年   12篇
  1983年   9篇
  1982年   9篇
  1981年   7篇
  1979年   6篇
  1977年   7篇
  1974年   8篇
  1973年   6篇
  1972年   8篇
  1971年   8篇
  1970年   7篇
  1966年   5篇
排序方式: 共有1879条查询结果,搜索用时 15 毫秒
101.
Cauliflower mosaic virus (CaMV) replicated in protoplasts and in inoculated leaves of the non-host, cotton (Gossypium hirsutum, L.). Protoplasts prepared from suspension-cultured cotton cells were infected by incubation with liposome-encapsulated CaMV virions. During a 1-week culture period the amount of CaMV nucleic acid as detected by nucleic acid hybridization in the protoplasts increased significantly regardless of whether or not the protoplasts contained vacuoles. In leaves inoculated with CaMV virions or CaMV DNA, viral DNA sequences were found by leaf skeleton hybridization to be located in small circular areas. DNA extracted from ultracentrifugal pellets of homogenates of inoculated leaves contained circular, gapped CaMV DNA only when inocula contained CaMV virions, CaMV DNA, or partial nested dimer CaMV plasmid DNA. When plants had been heavily watered, the CaMV DNA recovered contained degraded CaMV DNA. The results suggest that the host range limitation for CaMV is not due to an inability to replicate or spread locally in inoculated leaves.  相似文献   
102.
Serine palmitoyltransferase (SPT) is the key enzyme for the biosynthesis of sphingolipids. It has been reported that oral administration of myriocin (an SPT inhibitor) decreases plasma sphingomyelin (SM) and cholesterol levels, and reduces atherosclerosis in apoE knockout (KO) mice. We studied cholesterol absorption in myriocin-treated WT or apoE KO animals and found that, after myriocin treatment, the mice absorbed significantly less cholesterol than controls, with no observable pathological changes in the small intestine. More importantly, we found that heterozygous Sptlc1 (a subunit of SPT) KO mice also absorbed significantly less cholesterol than controls. To understand the mechanism, we measured protein levels of Niemann-Pick C1-like 1 (NPC1L1), ABCG5, and ABCA1, three key factors involved in intestinal cholesterol absorption. We found that NPC1L1 and ABCA1 were decreased, whereas ABCG5 was increased in the SPT deficient small intestine. SM levels on the apical membrane were also measured and they were significantly decreased in SPT deficient mice, compared with controls. In conclusion, SPT deficiency might reduce intestinal cholesterol absorption by altering NPC1L1 and ABCG5 protein levels in the apical membranes of enterocytes through lowering apical membrane SM levels. This may be also true for ABCA1 which locates on basal membrane of enterocytes. Manipulation of SPT activity could thus provide a novel alternative treatment for dyslipidemia.  相似文献   
103.
In an earlier study, oxidation of tryptophan hydroxylase was implicated as its affinity was decreased with aging in rat brain. To establish any potential link between its oxidative damage and aging, we have determined the activities of antioxidant enzymes in midbrain, pons and medulla of 2, 12 and 24 month old Fisher 344 BNF1 rats. The results obtained suggest that the activities of antioxidant enzymes varied considerably with age and brain regions studied. Activities of Cu/Zn superoxide dismutase and glutathione peroxidase were found to increase from 2 to 12 months and then decrease in 24 month old rats. However catalase activity decreased consistently with the age. A parallel increase in the carbonyl content was observed in these brain regions indicating the oxidation of proteins. Reactive oxygen species when included in the incubation mixture decreased the activity of tryptophan hydroxylase in a concentration dependent manner. The loss of tryptophan hydroxylase activity induced by hydrogen peroxide and superoxide anion was prevented by catalase. However superoxide dismutase did not provide such protection. Sulfhydryl agents, cysteine, glutathione and dithiothreitol partially prevented the loss of activity. These studies suggest an involvement of reactive oxygen species for sulfhydryl oxidation of tryptophan hydroxylase in aging.  相似文献   
104.
Aims:  To find out the prevalence of different serogroups of Escherichia coli ( E. coli ) and to detect heat-stable (ST) and heat-labile (LT) enterotoxin genes of enterotoxigenic E. coli (ETEC) from the faeces of mithun calves with diarrhoea.
Methods and Results:  Faecal samples obtained from 65 diarrhoeic mithun calves of under 2 months of age were examined for E. coli using polymerase chain reaction (PCR). Fifty-four E. coli isolates were obtained from those samples, which belonged to 38 different serogroups. Out of 54 isolates tested by PCR, two isolates (3·70%) belonging to serogroups O26 and O55 were found to possess gene that code for ST enterotoxin and one isolate (1·85%) belonging to serogroup O125 was found to carry LT enterotoxin gene.
Conclusions:  Escherichia coli isolates from diarrhoeic mithun calves were found to possess ST and LT enterotoxin genes, which are designated as ETEC, and these isolates can be detected through PCR using specific primers.
Significance and Impact of the Study:  This study reports the isolation of ETEC possessing ST and LT enterotoxin genes for the first time and ETEC could be a cause of diarrhoea in mithun calves leading to calf mortality.  相似文献   
105.
While coagulase-negative staphylococci (CoNS), with their ability to form a thick, multilayered biofilm on foreign bodies, have been identified as the major cause of implant-associated infections, no data are available about biofilm formation by staphylococcal small-colony variants (SCVs). In the past years, a number of device-associated infections due to staphylococcal SCVs were described, among them, several pacemaker infections due to SCVs of CoNS auxotrophic to hemin. To test the characteristics of SCVs of CoNS, in particular, to study the ability of SCVs to form a biofilm on foreign bodies, we generated a stable mutant in electron transport by interrupting one of the hemin biosynthetic genes, hemB, in Staphylococcus epidermidis. In fact, this mutant displayed a stable SCV phenotype with tiny colonies showing strong adhesion to the agar surface. When the incubation time was extended to 48 h or a higher inoculum concentration was used, the mutant produced biofilm amounts on polystyrene similar to those produced by the parent strain. When grown under planktonic conditions, the mutant formed markedly larger cell clusters than the parental strain which were completely disintegrated by the specific beta-1,6-hexosaminidase dispersin B but were resistant to trypsin treatment. In a dot blot assay, the mutant expressed larger amounts of polysaccharide intercellular adhesin (PIA) than the parent strain. In conclusion, interrupting a hemin biosynthetic gene in S. epidermidis resulted in an SCV phenotype. Markedly larger cell clusters and the ability of the hemB mutant to form a biofilm are related to the augmented expression of PIA.  相似文献   
106.
The metabolism of [14C]cholesterol- and [3H]retinol-labeled chylomicrons obtained from canine thoracic duct or rabbit mesenteric lymph was investigated in normal fasted rabbits. Typically, 70-80% of the chylomicrons injected into the rabbits were cleared from the plasma in 20 min, and their uptake was accounted for principally by the liver and the bone marrow. Surprisingly, the bone marrow was a major site of uptake; the uptake ranged from about half that of the liver to a nearly equal amount. The importance and specificity of chylomicron-chylomicron remnant uptake by the bone marrow were established by demonstrating that (a) bone marrow throughout the body accumulated these lipoproteins, (b) the level of uptake was consistent regardless of how the values were calculated or how the chylomicrons were prepared, (c) the uptake represented specific binding, and (d) radiolabeled intestinal lipoproteins induced in vivo delivered cholesterol and retinol to the marrow. Electron microscopic examination of the rabbit bone marrow established that perisinusoidal macrophages uniquely accounted for the uptake of the chylomicrons. Whereas liver cleared a variety of both triglyceride-rich lipoproteins (chylomicrons, chylomicron remnants, and very low density lipoproteins) and cholesterol-rich lipoproteins (beta-very low density lipoproteins and high density lipoproteins containing apolipoprotein E), bone marrow uptake appeared to be restricted to the triglyceride-rich lipoproteins. More chylomicron remnants (generated in a hepatectomized rabbit) were cleared by the liver than by the bone marrow, and the addition of excess apolipoprotein E to chylomicrons resulted in their preferential uptake by the liver. The role of chylomicron-chylomicron remnant delivery of lipids or lipid-soluble vitamins to rabbit bone marrow is open to speculation, and whether triglyceride-rich lipoprotein uptake occurs to a significant extent in the bone marrow of humans remains to be determined.  相似文献   
107.

Background  

The origins of the recombination hotspots that are a common feature of both allelic and non-allelic homologous recombination in the human genome are poorly understood. We have investigated, by comparative sequencing, the evolution of two hotspots of non-allelic homologous recombination on the Y chromosome that lie within paralogous sequences known to sponsor deletions resulting in male infertility.  相似文献   
108.
Fanconi Anaemia (FA) is a cancer predisposition disorder characterized by spontaneous chromosome breakage and high cellular sensitivity to genotoxic agents. In response to DNA damage, a multi-subunit assembly of FA proteins, the FA core complex, monoubiquitinates the downstream FANCD2 protein. The FANCE protein plays an essential role in the FA process of DNA repair as the FANCD2-binding component of the FA core complex. Here we report a crystallographic and biological study of human FANCE. The first structure of a FA protein reveals the presence of a repeated helical motif that provides a template for the structural rationalization of other proteins defective in Fanconi Anaemia. The portion of FANCE defined by our crystallographic analysis is sufficient for interaction with FANCD2, yielding structural information into the mode of FANCD2 recruitment to the FA core complex. Disease-associated mutations disrupt the FANCE–FANCD2 interaction, providing structural insight into the molecular mechanisms of FA pathogenesis.  相似文献   
109.
Cancer cells can be killed by photosensitizing agents that induce toxic effects when exposed to nonhazardous light, but this also causes significant damage to surrounding healthy cells. The specificity of photodynamic therapy can be increased by conjugating photosensitizing agents to antibodies and antibody fragments that bind specifically to tumor cell antigens. However, standard conjugation reactions produce heterogeneous products whose targeting specificity and spectroscopic properties can be compromised. In this study, we used an antibody fragment (scFv-425) that binds to the epidermal growth factor receptor (EGFR) as a model to investigate the use of SNAP-tag fusions as an improved conjugation strategy. The scFv-425-SNAP-tag fusion protein allowed the specific conjugation of a chlorin e6 photosensitizer modified with O(6)-benzylguanine, generating a homogeneous product that was delivered specifically to EGFR(+) cancer cells and resulted in significant, tumor cell-specific cytotoxicity. The impact of our results on the development of photodynamic therapy is discussed.  相似文献   
110.
BACKGROUND: In severe, medically unresponsive congenital hyperinsulinism (CHI), the histological differentiation of focal versus diffuse disease is vital, since the surgical management is completely different. Genetic analysis may help in the differential diagnosis, as focal CHI is associated with a paternal germline ABCC8 or KCNJ11 mutation and a focal loss of maternal chromosome 11p15, whereas a maternal mutation, or homozygous/compound heterozygous ABCC8 and KCNJ11 mutations predict diffuse-type disease. However, genotyping usually takes too long to be helpful in the absence of a founder mutation. METHODS: In 4 patients, a rapid genetic analysis of the ABBC8 and KCNJ11 genes was performed within 2 weeks on request prior to the decision of pancreatic surgery. RESULTS: Two patients had no mutations, rendering the genetic analysis non-informative. Peroperative multiple biopsies showed diffuse disease. One patient had a paternal KCNJ11 mutation and focal disease confirmed by positron emission tomography scan and biopsies. One patient had a de novo heterozygous ABBC8 mutation and unexplained diffuse disease confirmed by positron emission tomography scan and biopsies. CONCLUSION: A rapid analysis of the entire ABBC8 and KCNJ11 genes should not stand alone in the preoperative assessment of patients with CHI, except for the case of maternal, or homozygous/compound heterozygous disease-causing mutations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号