首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   231篇
  免费   12篇
  2023年   1篇
  2022年   3篇
  2021年   5篇
  2020年   2篇
  2019年   4篇
  2018年   4篇
  2017年   2篇
  2016年   11篇
  2015年   7篇
  2014年   10篇
  2013年   22篇
  2012年   22篇
  2011年   14篇
  2010年   7篇
  2009年   10篇
  2008年   9篇
  2007年   13篇
  2006年   15篇
  2005年   10篇
  2004年   7篇
  2003年   11篇
  2002年   7篇
  2001年   7篇
  2000年   2篇
  1999年   4篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1994年   3篇
  1993年   2篇
  1992年   3篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1978年   3篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1974年   2篇
  1973年   3篇
  1972年   1篇
  1970年   3篇
  1959年   1篇
  1957年   1篇
排序方式: 共有243条查询结果,搜索用时 219 毫秒
31.
32.
A large number of cellular processes are mediated by protein-protein interactions, often specified by particular protein binding modules. PDZ domains make up an important class of protein-protein interaction modules that typically bind to the C-terminus of target proteins. These domains act as a scaffold where signaling molecules are linked to a multiprotein complex. Human glutaminase interacting protein (GIP), also known as tax interacting protein 1, is unique among PDZ domain-containing proteins because it is composed almost exclusively of a single PDZ domain rather than one of many domains as part of a larger protein. GIP plays pivotal roles in cellular signaling, protein scaffolding, and cancer pathways via its interaction with the C-terminus of a growing list of partner proteins. We have identified novel internal motifs that are recognized by GIP through combinatorial phage library screening. Leu and Asp residues in the consensus sequence were identified to be critical for binding to GIP through site-directed mutagenesis studies. Structure-based models of GIP bound to two different surrogate peptides determined from nuclear magnetic resonance constraints revealed that the binding pocket is flexible enough to accommodate either the smaller carboxylate (COO(-)) group of a C-terminal recognition motif or the bulkier aspartate side chain (CH(2)COO(-)) of an internal motif. The noncanonical ILGF loop in GIP moves in for the C-terminal motif but moves out for the internal recognition motifs, allowing binding to different partner proteins. One of the peptides colocalizes with GIP within human glioma cells, indicating that GIP might be a potential target for anticancer therapeutics.  相似文献   
33.
Previous studies have revealed that organophosphate pesticides (OPs) are primarily metabolized by xenobiotic metabolizing enzymes (XMEs). Very few studies have explored genetic polymorphisms of XMEs and their association with DNA damage in pesticides-exposed workers. Present study was designed to determine the influence of CYP2C9, GSTM1, GSTT1 and NAT2 genetic polymorphisms on DNA damage in workers occupationally exposed to OPs. We examined 268 subjects including 134 workers occupationally exposed to OPs and an equal number of normal healthy controls. The DNA damage was evaluated using alkaline comet assay and genotyping was done using individual polymerase chain reaction (PCR) or polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Acetylcholinesterase and paraoxonase activity were found to be significantly lowered in workers as compared to control subjects which were analyzed as biomarkers of toxicity due to OPs exposure (p<0.001). Workers showed significantly higher DNA tail moment (TM) compared to control subjects (14.32±2.17 vs. 6.24±1.37 tail % DNA, p<0.001). GSTM1 null genotype was found to influence DNA TM in workers (p<0.05). DNA TM was also found to be increased with concomitant presence of NAT2 slow acetylation and CYP2C9*3/*3 or GSTM1 null genotypes (p<0.05). DNA TM was found increased in NAT2 slow acetylators with mild and heavy smoking habits in control subjects and workers, respectively (p<0.05). The results of this study suggest that GSTM1 null genotypes, and an association of NAT2 slow acetylation genotypes with CYP2C9*3/*3 or GSTM1 null genotypes may modulate DNA damage in workers occupationally exposed to OPs.  相似文献   
34.

Background

The interactions among various biomarkers remained unexplored under the stressful environment of high-altitude. Present study evaluated interactions among biomarkers to study susceptibility for high altitude pulmonary edema (HAPE) in HAPE-patients (HAPE-p) and adaptation in highland natives (HLs); both in comparison to HAPE-free sojourners (HAPE-f).

Methodology/Principal Findings

All the subjects were recruited at 3500 m. We measured clinical parameters, biochemical levels in plasma and gene expression using RNA from blood; analyzed various correlations between and among the clinical parameters, especially arterial oxygen saturation (SaO2) and mean arterial pressure (MAP) and biochemical parameters like, asymmetric dimethylarginine (ADMA), serotonin (5-HT), 8-iso-prostaglandin F2α (8-isoPGF2α), endothelin-1 (ET-1), plasma renin activity (PRA), plasma aldosterone concentration (PAC), superoxide dismutase (SOD) and nitric oxide (NO) in HAPE-p, HAPE-f and HLs. ADMA, 5-HT, 8-isoPGF2α, ET-1 levels, and PAC were significantly higher (p<0.0001, each), whereas SOD activity and NO level were significantly lower in HAPE-p than HAPE-f (p≤0.001). Furthermore, ADMA, 5-HT, 8-isoPGF2α, NO levels and PAC were significantly higher (p<0.0001), whereas ET-1 level significantly (p<0.0001) and SOD activity non-significantly (p>0.05) lower in HLs than HAPE-f. The expression of respective genes differed in the three groups. In the correlations, SaO2 inversely correlated with ADMA, 5-HT and 8-isoPGF2α and positively with SOD in HAPE-p (p≤0.009). MAP correlated positively with 5-HT and 8-isoPGF2α in HAPE-p and HLs (p≤0.004). A strong positive correlation was observed between ADMA and 5-HT, 5-HT and 8-isoPGF2α (p≤0.001), whereas inverse correlation of SOD with ET-1 in HAPE-p and HLs (p≤0.004), with 5-HT and 8-isoPGF2α in HAPE-p (p = 0.01) and with 5-HT in HLs (p = 0.05).

Conclusions/Significance

The interactions among these markers confer enhanced vascular activity in HLs and HAPE in sojourners.  相似文献   
35.

Background

To determine the association of the A55T and K153R polymorphisms of the Myostatin gene with obesity, abdominal obesity and lean body mass (LBM) in Asian Indians in north India.

Materials and Methods

A total of 335 subjects (238 men and 97 women) were assessed for anthropometry, % body fat (BF), LBM and biochemical parameters. Associations of Myostatin gene polymorphisms were evaluated with anthropometric, body composition and biochemical parameters. In A55T polymorphism, BMI (p = 0.04), suprailiac skinfold (p = 0.05), total skinfold (p = 0.008), %BF (p = 0.002) and total fat mass (p = 0.003) were highest and % LBM (p = 0.03) and total LBM (Kg) were lowest (p = 0.04) in subjects with Thr/Thr genotype as compared to other genotypes. Association analysis of K153R polymorphism showed that subjects with R/R genotype had significantly higher BMI (p = 0.05), waist circumference (p = 0.04), %BF (p = 0.04) and total fat mass (p = 0.03), and lower %LBM (p = 0.02) and total LBM [(Kg), (p = 0.04)] as compared to other genotypes. Using a multivariate logistic regression model after adjusting for age and sex, subjects with Thr/Thr genotype of A55T showed high risk for high %BF (OR, 3.92, 95% Cl: 2.61–12.41), truncal subcutaneous adiposity (OR, 2.9, 95% Cl: 1.57–6.60)] and low LBM (OR, 0.64, 95% CI: 0.33–0.89) whereas R/R genotype of K153R showed high risk of obesity (BMI; OR, 3.2, 95% CI: 1.2–12.9; %BF, OR, 3.6, 95% CI: 1.04–12.4), abdominal obesity (OR, 2.12, 95% CI: 2.71–14.23) and low LBM (OR, 0.61, 95% CI: 0.29–0.79).

Conclusions/Significance

We report that variants of Myostatin gene predispose to obesity, abdominal obesity and low lean body mass in Asian Indians in north India.  相似文献   
36.
37.
38.
This study quantifies the nationwide land cover and long-term changes in forests and its implications on forest fragmentation in Nepal. The multi-source datasets were used to generate the forest cover information for 1930, 1975, 1985, 1995, 2005 and 2014. This study analyzes distribution of land cover, rate of deforestation, changes across forest types, forest canopy density and pattern of fragmentation. The land cover legend for 2014 is consisting of 21 classes: tropical dry deciduous sal forest, tropical moist deciduous sal forest, subtropical broad-leaved forest, subtropical pine forest, lower temperate broad leaved forest, upper temperate broad leaved forest, lower temperate mixed broad leaved forest, upper temperate mixed broad leaved forest, temperate needle leaved forest, subalpine forest, plantations, tropical scrub, subtropical scrub, temperate scrub, alpine scrub, grassland, agriculture, water bodies, barren land and settlements. The forest cover statistics for Nepal obtained in this study shows an area of 76,710 km2 in 1930 which has decreased to 39,392 km2 in 2014. A net loss of 37,318 km2 (48.6%) was observed in last eight decades. Analysis of annual rate of net deforestation for the recent period indicates 0.01% during 2005–2014. An increase in the number of forest patches from 6925 (in 1930) to 42,961 (in 2014) was noticed. The significant observation is 75.5% of reduction in core 3 forest, whereas, patch, perforated and edge classes show the increase in percentage of fragmentation classes from 1930 to 2014. The results of this work will support the understanding of deforestation and its consequences on fragmentation for maintaining and improving the forest resources of Nepal.  相似文献   
39.
Impaired cell polarity is a hallmark of diseased tissue. In the cardiovascular system, laminar blood flow induces endothelial planar cell polarity, represented by elongated cell shape and asymmetric distribution of intracellular organelles along the axis of blood flow. Disrupted endothelial planar polarity is considered to be pro‐inflammatory, suggesting that the establishment of endothelial polarity elicits an anti‐inflammatory response. However, a causative relationship between polarity and inflammatory responses has not been firmly established. Here, we find that a cell polarity protein, PAR‐3, is an essential gatekeeper of GSK3β activity in response to laminar blood flow. We show that flow‐induced spatial distribution of PAR‐3/aPKCλ and aPKCλ/GSK3β complexes controls local GSK3β activity and thereby regulates endothelial planar polarity. The spatial information for GSK3β activation is essential for flow‐dependent polarity to the flow axis, but is not necessary for flow‐induced anti‐inflammatory response. Our results shed light on a novel relationship between endothelial polarity and vascular homeostasis highlighting avenues for novel therapeutic strategies.  相似文献   
40.
The intolerance of DNA polymerase δ (Polδ) to incorrect base pairing contributes to its extremely high accuracy during replication, but is believed to inhibit translesion synthesis (TLS). However, chicken DT40 cells lacking the POLD3 subunit of Polδ are deficient in TLS. Previous genetic and biochemical analysis showed that POLD3 may promote lesion bypass by Polδ itself independently of the translesion polymerase Polζ of which POLD3 is also a subunit. To test this hypothesis, we have inactivated Polδ proofreading in pold3 cells. This significantly restored TLS in pold3 mutants, enhancing dA incorporation opposite abasic sites. Purified proofreading-deficient human Polδ holoenzyme performs TLS of abasic sites in vitro much more efficiently than the wild type enzyme, with over 90% of TLS events resulting in dA incorporation. Furthermore, proofreading deficiency enhances the capability of Polδ to continue DNA synthesis over UV lesions both in vivo and in vitro. These data support Polδ contributing to TLS in vivo and suggest that the mutagenesis resulting from loss of Polδ proofreading activity may in part be explained by enhanced lesion bypass.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号