首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   95篇
  免费   4篇
  2023年   1篇
  2021年   3篇
  2020年   1篇
  2019年   4篇
  2018年   1篇
  2017年   2篇
  2016年   6篇
  2015年   4篇
  2014年   5篇
  2013年   5篇
  2012年   4篇
  2011年   7篇
  2010年   4篇
  2009年   8篇
  2008年   8篇
  2007年   7篇
  2006年   10篇
  2005年   7篇
  2003年   2篇
  2002年   4篇
  2001年   1篇
  1999年   1篇
  1998年   1篇
  1991年   1篇
  1973年   1篇
  1969年   1篇
排序方式: 共有99条查询结果,搜索用时 906 毫秒
31.
Specific phase relation of serotonin and dopamine modulate the hypothalamo–hypophyseal–gonadal axis as well as photosexual responses in Japanese quail, but the effect of these specific phase relations on testicular activity and steroidogenesis is not yet been investigated. We hypothesized that temporal phase relation induced alteration in local testicular gonadotropin-releasing hormone (GnRH)–Gonadotropin-inhibitory hormone (GnIH) and their receptor system may modulate the testicular activity and steroidogenesis through local (paracrine and autocrine) action. To validate this hypothesis, we have checked the alterations in the expression of gonadotropin-releasing hormone receptor (GnRH-R), gonadotropin-inhibitory hormone receptor (GnIH-R) messenger RNA (mRNA), growth hormone receptor (GH-R), proliferating cell nuclear antigen (PCNA), cell communication and gap junctional proteins (14-3-3 and connexin-43 [Cnx-43]), steroidogenic factor-1 (SF-1), steroidogenic acute regulatory (StAR) protein, steroidogenic enzyme (3β-hydroxysteroid dehydrogenase [3β-HSD]) in testis as well as androgen receptor (AR) in testis and epididymis of control, 8-, and 12-hr quail. Experimental findings clearly indicate the increased expression of GnIH-R mRNA and suppression of GnRH-R, GH-R, PCNA, 14-3-3, Cnx-43, SF-1, StAR, 3β-HSD in testis as well as AR in testis and epididymis in 8-hr quail, while 12-hr quail exhibited the opposite results that is significantly decreased expression of GnIH-R mRNA and increased expression of GnRH-R, GH-R, PCNA, 14-3-3, Cnx-43, SF-1, StAR, 3β-HSD in testis as well as AR in testis and epididymis. The significantly increased intratesticular testosterone has been observed in the 12-hr quail while, 8-hr quail showed opposite result. Hence, it can be concluded that 12-hr quail showed significantly increased testicular activity and steroidogenesis while opposite pattern was observed in 8-hr quail.  相似文献   
32.
2,2,2-Trifluoroethanol (TFE) is widely used to induce helix formation in peptides and proteins, but the mechanism behind this effect is still poorly understood. Several recent papers have proposed that TFE acts by selectively desolvating the peptide backbone groups of the helix state. Infrared (IR) spectroscopy of the amide I band of polypeptides can be used to probe both secondary structure and backbone solvation, making this technique well suited for addressing the effect of TFE on polypeptide conformation. In this paper, we report the IR spectra as a function of TFE concentration for an alanine-rich peptide based on the repeat (AAKAA)(n)(). The IR spectra confirm that TFE desolvates the helical state of the peptide to a greater extent than the random coil state. Moreover, using a series of specifically (13)C-labeled peptides, the precise residues desolvated in the presence of TFE were identified. The residues most desolvated by TFE are the alanines located at position i - 4 in the sequence, where i is a lysine residue. This pattern of desolvation is consistent with molecular dynamics simulations which predict strong interactions between the lysine side chain at position n and the backbone carbonyl of the alanine at position i - 4. This is the first direct spectroscopic evidence of specific desolvation of helix backbone atoms in model alanine-rich peptides.  相似文献   
33.
Papillomaviruses are small DNA viruses that infect epithelial tissues and cause warts. Human papillomavirus (HPV) infection is the primary risk factor for the development of cervical cancer. The E6 and E7 oncogenes are the only genes consistently expressed in HPV-positive cervical cancer cells. Cottontail rabbit papillomavirus (CRPV) induces papillomas and carcinomas on cottontail and domestic rabbits and provides an excellent animal model of HPV infection and vaccine development. CRPV encodes three transforming proteins; LE6, SE6, and E7. Each of these proteins is required for papilloma formation. Like HPV E7, the CRPV E7 protein binds to the tumor suppressor pRB. In contrast, unlike HPV E6, the CRPV E6 proteins do not bind the tumor suppressor p53. Although more than a dozen cellular proteins have been identified as HPV E6 interacting proteins, nothing is known about the cellular interacting proteins of CRPV E6s. Here we describe the association of CRPV E6s with hDlg/SAP97, the mammalian homolog of the Drosophila discs large tumor suppressor protein. HPV E6 has previously shown to bind and target hDlg/SAP97 for degradation. Our results demonstrate that both LE6 and SE6 interact with hDlg/SAP97, although their association does not lead to the degradation of hDlg/SAP97. The PDZ domains of hDlg were shown to be sufficient for interaction with CRPV E6 proteins while the C-terminus of CRPV E6 is essential for the interaction with hDlg. The association of hDlg with SE6 may be important but not sufficient for the transformation of NIH 3T3 cells by SE6. Importantly, a CRPV SE6 mutant defective for papilloma formation did not interact with hDlg. These results suggest that interaction with hDlg/SAP97 plays a role in the biological function of CRPV E6s.  相似文献   
34.
35.
We report studies on loss of heme at or below pH 3.0 from two clinically important hemoglobin variants, HbE and HbS, in the presence and absence of phopholipid membranes. The kinetics of heme loss has been studied at pH 3.0 to simulate the same at a faster rate than at physiological pH, for spectroscopic investigation. Results obtained from the study clearly establish the probable fate of the lost heme to partition into the phospholipid bilayer independent of the pH range. This is also of particular importance to membranes containing the aminophospholipid and cholesterol which are predominantly localized in the inner leaflet of erythrocytes. Absorption measurements indicated such loss of heme when the Soret peak at 415 nm blue-shifted to 380 nm at pH 3.0. The extent of this blue shift decreased from 35 nm to ~15 nm in the presence of small unilammelar vesicles of both dimyristoyl- and dioleoyl-based phosphatidylcholine and phosphatidylethanolamine, indicating partitioning of the released heme in the membrane bilayer. The kinetics of heme loss was faster from HbE than HbA and HbS, obeying first-order reaction kinetics. Released heme could be involved in the premature destruction of erythrocytes in hemoglobin disorders.  相似文献   
36.
Toll-like receptor 3 (TLR3), an antiviral innate immunity receptor recognizes double-stranded RNA, preferably of viral origin and induces type I interferon production, which causes maturation of phagocytes and subsequent release of chemical mediators from phagocytes against some viral infections. The present study has characterized TLR3 complementary DNA (cDNA) in buffalo (Bubalus bubalis) and nilgai (Boselaphus tragocamelus). TLR3 coding sequences of both buffalo and nilgai were amplified from cultured dendritic cell cDNA and cloned in pGEMT-easy vector for characterization by restriction endonucleases and nucleotide sequencing. Sequence analysis reveals that 2,715-bp-long TLR3 open reading frame encoding 904 amino acids in buffalo as well as nilgai is similar to that of cattle. Buffalo TLR3 has 98.6 and 97.9% identity at nucleotide level with nilgai and cattle, respectively. Likewise, buffalo TLR3 amino acids share 96.7% identity with cattle and 97.8% with nilgai. Non-synonymous substitutions exceeding synonymous substitutions indicate evolution of this receptor through positive selection among these three ruminant species. Buffalo and nilgai appear to have diverged from a common ancestor in phylogenetic analysis. Predicted protein structures of buffalo and nilgai TLR3 from deduced amino acid sequences indicate that the buffalo and nilgai TLR3 ectodomain may be more efficient in ligand binding than that of cattle. Furthermore, TLR3 messenger RNA expression in tissues as quantified by real-time PCR was found higher in nilgai than buffalo. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   
37.
Proper chromosome segregation is of paramount importance for proper genetic inheritance. Defects in chromosome segregation can lead to aneuploidy, which is a hallmark of cancer cells. Eukaryotic chromosome segregation is accomplished by the bipolar spindle. Additional mechanisms, such as the spindle assembly checkpoint and centromere positioning, further help to ensure complete segregation fidelity. Here we present the fission yeast csi2+. csi2p localizes to the spindle poles, where it regulates mitotic microtubule dynamics, bipolar spindle formation, and subsequent chromosome segregation. csi2 deletion (csi2Δ) results in abnormally long mitotic microtubules, high rate of transient monopolar spindles, and subsequent high rate of chromosome segregation defects. Because csi2Δ has multiple phenotypes, it enables estimates of the relative contribution of the different mechanisms to the overall chromosome segregation process. Centromere positioning, microtubule dynamics, and bipolar spindle formation can all contribute to chromosome segregation. However, the major determinant of chromosome segregation defects in fission yeast may be microtubule dynamic defects.  相似文献   
38.
39.
Pyridoxal 5′-phosphate (PLP) is a cofactor for dozens of B6 requiring enzymes. PLP reacts with apo-B6 enzymes by forming an aldimine linkage with the ε-amino group of an active site lysine residue, thus yielding the catalytically active holo-B6 enzyme. During protein turnover, the PLP is salvaged by first converting it to pyridoxal by a phosphatase and then back to PLP by pyridoxal kinase. Nonetheless, PLP poses a potential toxicity problem for the cell since its reactive 4′-aldehyde moiety forms covalent adducts with other compounds and non-B6 proteins containing thiol or amino groups. The regulation of PLP homeostasis in the cell is thus an important, yet unresolved issue. In this report, using site-directed mutagenesis, kinetic, spectroscopic and chromatographic studies we show that pyridoxal kinase from E. coli forms a complex with the product PLP to form an inactive enzyme complex. Evidence is presented that, in the inhibited complex, PLP has formed an aldimine bond with an active site lysine residue during catalytic turnover. The rate of dissociation of PLP from the complex is very slow, being only partially released after a 2-hour incubation with PLP phosphatase. Interestingly, the inactive pyridoxal kinase•PLP complex can be partially reactivated by transferring the tightly bound PLP to an apo-B6 enzyme. These results open new perspectives on the mechanism of regulation and role of pyridoxal kinase in the Escherichia coli cell.  相似文献   
40.
Present work was undertaken to describe (i) age dependent (prepuberal-3, 4, 5 and 6 weeks old, puberal and actively laying 8 and 12 weeks old and aged 78 weeks old) (ii) photoperiodic response dependent (photosensitive and photorefractory) and sex steroid dependent (estradiol benzoate and its antagonist tamoxifen treated) variation in the ovary and shell gland activity of Japanese quail (Coturnix coturnix japonica). Further, in view of the role of neurohypophysial peptide arginine vasotocin (AVT) in many physiological processes including age/reproduction related oviposition, expression of ir-AVT was also monitored in the ovary of quail. All the parameters associated with histodifferentiation increased rapidly during the developing stages followed by a decrease in old age, which also increased in reproductively quiescent photorefractory birds following estradiol treatment and decreased in reproductively active photosensitive quail following tamoxifen treatment. Using AVT-specific antibody, expression of immunoreactive AVT (ir-AVT) observed in the ovary of photosensitive quail was not detected in the photorefractory quail. However, administration of estrogen in the photorefractory quail stimulated the growth and activity of ovary and shell gland also resulted in the expression of ovarian ir-AVT. On the other hand, tamoxifen eliminated the localization of ir-AVT in the ovary of photosensitive quail in addition to a decrease in the shell gland protein and alkaline phosphatase activity. It is concluded that estrogen not only affects the growth and differentiation of ovary and oviduct including shell gland but also regulates the expression of ovarian AVT. It is also suggested that in addition to reported paracrine effect of AVT in the shell gland of Japanese quail for oviposition, ovarian AVT may also affect ovarian function (ovulation), and in part, this regulation is estrogen dependent.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号