首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   85篇
  免费   4篇
  89篇
  2022年   1篇
  2021年   1篇
  2020年   4篇
  2019年   1篇
  2018年   5篇
  2017年   1篇
  2016年   8篇
  2015年   5篇
  2014年   7篇
  2013年   11篇
  2012年   8篇
  2011年   8篇
  2010年   6篇
  2009年   4篇
  2008年   2篇
  2007年   3篇
  2006年   4篇
  2004年   2篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
  1998年   1篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
排序方式: 共有89条查询结果,搜索用时 15 毫秒
71.
While the Green Revolution has been successful in some regions like South and East Asia, it could hardly address any achievement in Sub-Saharan Africa (SSA). This paper tries to draw a picture on lessons learned from the failures of this revolution that should be taken into account before implementing the so-called Gene Revolution in the SSA region. After scrutinizing the failures and the pros and cons of GM crops in the region, the paper introduces some potentials for improving the malnutrition situation in SSA through launching a successful GM technology. However, it remains doubtful whether this technology can improve the situation of small-scale farmers as long as they receive no financial support from their national governments. Therefore, before any intervention, the socio-economic and environmental impacts of GM technology need to be carefully addressed in the framework of a series of risk assessment studies. Besides, some sort of multi-stakeholder dialog (from small-scale farmers to consumers) involving public–private sector and non-governmental organizations should be heated up at both national and regional levels with regard to the myths and truths of this technology.  相似文献   
72.
We performed bottom-up engineering of a synthetic pathway in Escherichia coli for the production of eukaryotic trimannosyl chitobiose glycans and the transfer of these glycans to specific asparagine residues in target proteins. The glycan biosynthesis was enabled by four eukaryotic glycosyltransferases, including the yeast uridine diphosphate-N-acetylglucosamine transferases Alg13 and Alg14 and the mannosyltransferases Alg1 and Alg2. By including the bacterial oligosaccharyltransferase PglB from Campylobacter jejuni, we successfully transferred glycans to eukaryotic proteins.  相似文献   
73.
Burkholderia mallei, the aetiologic agent of glanders, causes a variety of illnesses in animals and humans ranging from occult infections to acute fulminating septicaemias. To better understand the role of lipopolysaccharide (LPS) in the pathogenesis of these diseases, studies were initiated to characterize the structural and biological properties of lipid A moieties expressed by this organism. Using a combination of chemical analyses and MALDI-TOF mass spectrometry, B. mallei was shown to express a heterogeneous mixture of tetra- and penta-acylated lipid A species that were non-stoichiometrically substituted with 4-amino-4-deoxy-arabinose residues. The major penta-acylated species consisted of bisphosphorylated d-glucosamine disaccharide backbones possessing two amide linked 3-hydroxyhexadecanoic acids, two ester linked 3-hydroxytetradecanoic acids [C14:0(3-OH)] and an acyloxyacyl linked tetradecanoic acid, whereas, the major tetra-acylated species possessed all but the 3'-linked C14:0(3-OH) residues. In addition, although devoid of hexa-acylated species, B. mallei LPS was shown to be a potent activator of human Toll-like receptor 4 complexes and stimulated human macrophage-like cells (THP-1 and U-937), monocyte-derived macrophages and dendritic cells to produce high levels of TNF-alpha, IL-6 and RANTES. Based upon these results, it appears that B. mallei LPS is likely to play a significant role in the pathogenesis of human disease.  相似文献   
74.
Lipopolysaccharide (LPS) is the first defense against changing environmental factors for many bacteria. Here, we report the first structure of the LPS from cyanobacteria based on two strains of marine Synechococcus, WH8102 and CC9311. While enteric LPS contains some of the most complex carbohydrate residues in nature, the full-length versions of these cyanobacterial LPSs have neither heptose nor 3-deoxy-d-manno-octulosonic acid (Kdo) but instead 4-linked glucose as their main saccharide component, with low levels of glucosamine and galacturonic acid also present. Matrix-assisted laser desorption ionization mass spectrometry of the intact minimal core LPS reveals triacylated and tetraacylated structures having a heterogeneous mix of both hydroxylated and nonhydroxylated fatty acids connected to the diglucosamine backbone and a predominantly glucose outer core-like region for both strains. WH8102 incorporated rhamnose in this region as well, contributing to differences in sugar composition and possibly nutritional differences between the strains. In contrast to enteric lipid A, which can be liberated from LPS by mild acid hydrolysis, lipid A from these organisms could be produced by only two novel procedures: triethylamine-assisted periodate oxidation and acetolysis. The lipid A contains odd-chain hydroxylated fatty acids, lacks phosphate, and contains a single galacturonic acid. The LPS lacks any limulus amoebocyte lysate gelation activity. The highly simplified nature of LPSs from these organisms leads us to believe that they may represent either a primordial structure or an adaptation to the relatively higher salt and potentially growth-limiting phosphate levels in marine environments.Lipopolysaccharide (LPS) in the outer membrane layer is known to be the first line of defense against environmental factors in many gram-negative organisms, preventing lysis by complement, antimicrobial peptides and detergents (17, 21, 47). In proteobacteria, 3-deoxy-d-manno-octulosonic acid (Kdo), heptose, and phosphate are key parts of the conserved inner core of the LPS which connects the less-well-conserved outer core and sometimes an attached polysaccharide to the lipid A anchor. Why heptose is so well conserved is a mystery, but the prevalence of Kdo and phosphate may be related to the charge which they impart to the outer membrane and to their ability to bind divalent cations. The Kdo-phosphate metal binding center is capable of binding calcium with a dissociation constant (Kd) of 12 to 13 μM (28). This high-affinity binding of divalent cations is known to be necessary for the low permeability of LPS bilayers to some antibiotics (32), and it has been hypothesized that divalent cation cross-bridges may link LPS molecules on the bacterial cell surfaces of enterobacteria into a giant complex with very low membrane permeability (16).Though the LPSs of many proteobacteria are well characterized, the LPSs from cyanobacteria are much less studied. The cell envelopes of cyanobacteria resemble those of gram-negative bacteria structurally, consisting of a cytoplasmic membrane, a peptidoglycan layer, an outer membrane containing LPS, and sometimes additional structures (9, 14). Previous chemical analyses have shown the LPS of some cyanobacteria to be devoid of phosphate, Kdo, and heptose (11, 12, 42, 43). Given the lack of Kdo in these organisms as well as the fact that the lability of the Kdo-glucosamine ketosidic linkage allows for the mild acid hydrolysis of LPS to lipid A, it is perhaps not surprising that many attempts at hydrolysis of cyanobacterial LPS to lipid A have failed (for an example, see reference 29).Within the cyanobacteria, the genus Synechococcus represents a polyphyletic group of unicellular morphotypes. Synechococcus cells are found in both freshwater and marine environments. Organisms from group A Synechococcus and its sister taxon Prochlorococcus are extremely important primary producers in marine environments, with multiple “clades” similar to “species” described for other bacteria, dominating in different environments (3, 22). Unlike enterobacteria, which must frequently contend with an onslaught of host factors, members of the Synechococcus face grazing by protists and bacteriophages as their primary survival challenges.The genome of Synechococcus sp. strain CC9311 has been shown to be devoid of the genes for Kdo biosynthesis, while strain WH8102 has several putative genes for Kdo biosynthesis (18, 20). This suggests that the LPS of cyanobacteria could be significantly different from that of enteric bacteria and could show species/strain variation as well. A comparison of the structures of LPS from cyanobacteria and enterobacteria would afford a unique opportunity to understand which elements of LPS structure are essential to bacterial survival and which are adaptations to the environment in which the bacteria live. To further this understanding, we present here an analysis of the LPS structure from two strains of marine Synechococcus: an open-ocean-dwelling strain having the putative genes for Kdo biosynthesis (strain WH8102; clade III) and a coastal strain lacking these genes (strain CC9311; clade I). We further present two novel methods for producing lipid A from bacteria lacking the labile Kdo ketosidic linkage.  相似文献   
75.
Our recent studies have shown that the dendritic cell-specific ICAM nonintegrin CD209 (DC-SIGN) specifically binds to the core LPS of Escherichia coli K12 (E. coli), promoting bacterial adherence and phagocytosis. In this current study, we attempted to map the sites within the core LPS that are directly involved in LPS-DC-SIGN interaction. We took advantage of four sets of well-defined core LPS mutants, which are derived from E. coli, Salmonella enterica serovar Typhimurium, Neisseria gonorrhoeae, and Haemophilus ducreyi and determined interaction of each of these four sets with DC-SIGN. Our results demonstrated that N-acetylglucosamine (GlcNAc) sugar residues within the core LPS in these bacteria play an essential role in targeting the DC-SIGN receptor. Our results also imply that DC-SIGN is an innate immune receptor and the interaction of bacterial core LPS and DC-SIGN may represent a primeval interaction between Gram-negative bacteria and host phagocytic cells.  相似文献   
76.
It was recently shown that thymine dimers in the all-thymine oligonucleotide (dT)18 are fully formed in <1 ps after ultraviolet excitation. The speed and low quantum yield of this reaction suggest that only a small fraction of the conformers of this structurally disordered oligonucleotide are in a position to react at the instant of photon absorption. In this work, we explore the hypothesis that conventional molecular dynamics simulations can be used to predict the yield of cyclobutane pyrimidine dimers in DNA. Conformations obtained from simulations of thymidylyl-(3′-5′)-thymidine in various cosolvents were classified as dimerizable or nondimerizable depending on the distance between the C5-C6 double bonds of the adjacent thymine bases and the torsion angle between them. The quantum yield of cyclobutane pyrimidine dimer formation was calculated as the number of dimerizable conformations divided by the total number of conformations. The experimental quantum yields measured in the different solvents were satisfactorily reproduced using physically reasonable values for the two parameters. The mean dimerizable structure computed by averaging all of the dimerizable cis-syn conformations is structurally similar to the actual cis-syn dimer. Compared to the canonical B-form TT step, the most important structural property of a dimerizable conformation is its reduced helical twist angle of 22°.  相似文献   
77.
Analysis of two exopolysaccharide-deficient mutants of Rhizobium leguminosarum, RBL5808 and RBL5812, revealed independent Tn5 transposon integrations in a single gene, designated exo5. As judged from structural and functional homology, this gene encodes a UDP-glucose dehydrogenase responsible for the oxidation of UDP-glucose to UDP-glucuronic acid. A mutation in exo5 affects all glucuronic acid-containing polysaccharides and, consequently, all galacturonic acid-containing polysaccharides. Exo5-deficient rhizobia do not produce extracellular polysaccharide (EPS) or capsular polysaccharide (CPS), both of which contain glucuronic acid. Carbohydrate composition analysis and nuclear magnetic resonance studies demonstrated that EPS and CPS from the parent strain have very similar structures. Lipopolysaccharide (LPS) molecules produced by the mutant strains are deficient in galacturonic acid, which is normally present in the core and lipid A portions of the LPS. The sensitivity of exo5 mutant rhizobia to hydrophobic compounds shows the involvement of the galacturonic acid residues in the outer membrane structure. Nodulation studies with Vicia sativa subsp. nigra showed that exo5 mutant rhizobia are impaired in successful infection thread colonization. This is caused by strong agglutination of EPS-deficient bacteria in the root hair curl. Root infection could be restored by simultaneous inoculation with a Nod factor-defective strain which retained the ability to produce EPS and CPS. However, in this case colonization of the nodule tissue was impaired.  相似文献   
78.
For the rapid production of influenza vaccine antigens in unlimited quantities, a transition from conventional egg-based production to cell-based and recombinant systems is required. The need for higher-yield, lower-cost, and faster production processes is critical to provide adequate supplies of influenza vaccine to counter global pandemic threats. In this study, recombinant hemagglutinin proteins of influenza virus were expressed in the microalga Schizochytrium sp., an established, fermentable organism grown in large scale for the manufacture of polyunsaturated fatty acids for animal and human health applications. Schizochytrium was capable of exporting the full-length membrane-bound proteins in a secreted form suitable for vaccine formulation. One recombinant hemagglutinin (rHA) protein derived from A/Puerto Rico/8/34 (H1N1) influenza virus was evaluated as a vaccine in a murine challenge model. Protective immunity from lethal challenge with homologous virus was elicited by a single dose of 1.7, 5 or 15 µg rHA with or without adjuvant at survival rates between 80–100%. Full protection (100%) was established at all dose levels with or without adjuvant when mice were given a second vaccination. These data demonstrate the potential of Schizochytrium sp. as a platform for the production of recombinant antigens useful for vaccination against influenza.  相似文献   
79.
Cellulosic biomass is an abundant and promising energy source. To make cellulosic biofuels competitive against conventional fuels, conversion of rigid plant materials into sugars must become efficient and cost-effective. During cellulose degradation, cellulolytic enzymes generate cellobiose (β-(1→4)-glucose dimer) molecules, which in turn inhibit such enzymes by negative feedback. β-Glucosidases (BGLs) cleave cellobiose into glucose monomers, assisting overall cellulolytic activities. Therefore, BGLs are essential for efficient conversion of cellulosic biomass into biofuels, and it is important to characterize newly isolated BGLs for useful traits. Here, we report our discovery that the indigenous Taiwanese fungus Chaetomella raphigera strain D2 produces two molecular weight variants of a single BGL, D2-BGL (shortened to “D2”), which differ in O-glycosylation. The more extensively O-glycosylated form of native D2 (nD2L) has increased activity toward the natural substrate, cellobiose, compared to the less O-glycosylated form (nD2S). nD2L is more stable at 60°C, in acidic pH, and in the presence of the ionic detergent sodium dodecyl sulfate than nD2S. Furthermore, unlike nD2S, nD2L does not display substrate inhibition by an artificial substrate p-nitrophenyl glucopyranoside (pNPG), and the glucose feedback inhibition kinetics of nD2L is competitive (while it is non-competitive for nD2S), suggesting that these two glycovariants of D2 bind substrates differently. Interestingly, D2 produced in a heterologous system, Pichia pastoris, closely mimics properties of nD2S. Our studies suggest that O-glycosylation of D2 is important in determining its catalytic and biochemical properties.  相似文献   
80.
An efficient hairy root induction system for an important endangered medicinal plant, Dracocephalum kotschyi, was developed through Agrobacterium rhizogenes-mediated transformation by modifying the co-cultivation medium using five bacterial strains, A4, ATCC15834, LBA9402, MSU440, and A13 (MAFF-02-10266). A drastic increase in transformation frequency was observed when a Murashige and Skoog medium lacking NH4NO3 KH2PO4, KNO3 and CaCl2 was used, resulting in hairy root induction frequencies of 52.3 %, 69.6 %, 48.6 %, 89.0 %, and 80.0 % by A4, A13, LBA9402, MSU440, and ATCC15834 strains, respectively. For shoot induction, hairy roots and unorganized tumors induced by strain ATCC15834 were placed on an MS media supplemented with 0.1, 0.25, 0.5, and 1 mg/l BA plus 0.1 mg/l NAA. The high frequency of shoot regeneration and number of shoot were obtained in the medium containing 0.25 mg/l BA and 0.1 mg/l NAA. Root induction occurred from the base of regenerated shoots on the MS medium supplemented with 0.5 mg/l IBA after 10 days.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号