首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   85篇
  免费   4篇
  2022年   1篇
  2021年   1篇
  2020年   4篇
  2019年   1篇
  2018年   5篇
  2017年   1篇
  2016年   8篇
  2015年   5篇
  2014年   7篇
  2013年   11篇
  2012年   8篇
  2011年   8篇
  2010年   6篇
  2009年   4篇
  2008年   2篇
  2007年   3篇
  2006年   4篇
  2004年   2篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
  1998年   1篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
排序方式: 共有89条查询结果,搜索用时 15 毫秒
41.
Botryococcus braunii is a colonial green alga whose cells associate via a complex extracellular matrix (ECM) and produce prodigious amounts of liquid hydrocarbons that can be readily converted into conventional combustion engine fuels. We used quick-freeze deep-etch electron microscopy and biochemical/histochemical analysis to elucidate many new features of B. braunii cell/colony organization and composition. Intracellular lipid bodies associate with the chloroplast and endoplasmic reticulum (ER) but show no evidence of being secreted. The ER displays striking fenestrations and forms a continuous subcortical system in direct contact with the cell membrane. The ECM has three distinct components. (i) Each cell is surrounded by a fibrous β-1, 4- and/or β-1, 3-glucan-containing cell wall. (ii) The intracolonial ECM space is filled with a cross-linked hydrocarbon network permeated with liquid hydrocarbons. (iii) Colonies are enclosed in a retaining wall festooned with a fibrillar sheath dominated by arabinose-galactose polysaccharides, which sequesters ECM liquid hydrocarbons. Each cell apex associates with the retaining wall and contributes to its synthesis. Retaining-wall domains also form “drapes” between cells, with some folding in on themselves and penetrating the hydrocarbon interior of a mother colony, partitioning it into daughter colonies. We propose that retaining-wall components are synthesized in the apical Golgi apparatus, delivered to apical ER fenestrations, and assembled on the surfaces of apical cell walls, where a proteinaceous granular layer apparently participates in fibril morphogenesis. We further propose that hydrocarbons are produced by the nonapical ER, directly delivered to the contiguous cell membrane, and pass across the nonapical cell wall into the hydrocarbon-based ECM.  相似文献   
42.
Despite the fundamental roles of sialyl- and fucosyltransferases in mammalian physiology, there are few pharmacological tools to manipulate their function in a cellular setting. Although fluorinated analogs of the donor substrates are well-established transition state inhibitors of these enzymes, they are not membrane permeable. By exploiting promiscuous monosaccharide salvage pathways, we show that fluorinated analogs of sialic acid and fucose can be taken up and metabolized to the desired donor substrate-based inhibitors inside the cell. Because of the existence of metabolic feedback loops, they also act to prevent the de novo synthesis of the natural substrates, resulting in a global, family-wide shutdown of sialyl- and/or fucosyltransferases and remodeling of cell-surface glycans. As an example of the functional consequences, the inhibitors substantially reduce expression of the sialylated and fucosylated ligand sialyl Lewis X on myeloid cells, resulting in loss of selectin binding and impaired leukocyte rolling.  相似文献   
43.
Allium hirtifolim (Persian Shallot) belongs to Allium genus (Alliaceae family). We investigated the in vitro effects of chloroformic extract of A. hirtifolium and its Allicin on the proliferation of HeLa (cervical cancer), MCF7 (human, caucasion, breast, adenocarcinoma) and L929 (mouse, C3H/An, connective) cell lines. Our results showed that components of A. hirtifolium might inhibit proliferation of tumor cell lines. This inhibition in HeLa and MCF-7 cells was dose-dependent. The presence of Allicin was evaluated by TLC method in bulbs and the extract of A. hirtifolium was analyzed by HPLC. MTT test was performed 24, 48 and 72 h after cell culture. A significant decrease in cell lines was observed in HeLa and MCF-7 as compared to L929 cell lines. DNA fragmentation analysis revealed a large number of apoptotic cells in treated HeLa and MCF-7 cell groups, but no effects in L929 cells. Therefore A. hirtifolium might be a candidate for tumor suppression.  相似文献   
44.
Siglec-1 (sialoadhesin, CD169) is a surface receptor on human cells that mediates trans-enhancement of HIV-1 infection through recognition of sialic acid moieties in virus membrane gangliosides. Here, we demonstrate that mouse Siglec-1, expressed on the surface of primary macrophages in an interferon-α-responsive manner, captures murine leukemia virus (MLV) particles and mediates their transfer to proliferating lymphocytes. The MLV infection of primary B-cells was markedly more efficient than that of primary T-cells. The major structural protein of MLV particles, Gag, frequently co-localized with Siglec-1, and trans-infection, primarily of surface-bound MLV particles, efficiently occurred. To explore the role of sialic acid for MLV trans-infection at a submolecular level, we analyzed the potential of six sialic acid precursor analogs to modulate the sialylated ganglioside-dependent interaction of MLV particles with Siglec-1. Biosynthetically engineered sialic acids were detected in both the glycolipid and glycoprotein fractions of MLV producer cells. MLV released from cells carrying N-acyl-modified sialic acids displayed strikingly different capacities for Siglec-1-mediated capture and trans-infection; N-butanoyl, N-isobutanoyl, N-glycolyl, or N-pentanoyl side chain modifications resulted in up to 92 and 80% reduction of virus particle capture and trans-infection, respectively, whereas N-propanoyl or N-cyclopropylcarbamyl side chains had no effect. In agreement with these functional analyses, molecular modeling indicated reduced binding affinities for non-functional N-acyl modifications. Thus, Siglec-1 is a key receptor for macrophage/lymphocyte trans-infection of surface-bound virions, and the N-acyl side chain of sialic acid is a critical determinant for the Siglec-1/MLV interaction.  相似文献   
45.
Analysis of oligosaccharides by mass spectrometry (MS) has enabled the investigation of the glycan repertoire of organisms with high resolution and sensitivity. It is difficult, however, to correlate the expression of glycosyltransferases with the glycan structures present in a particular cell type or tissue because the use of MS for quantitative purposes has significant limitations. For this reason, in order to develop a technique that would allow relative glycan quantification by MS analysis between two samples, a procedure was developed for the isotopic labeling of oligosaccharides with (13)C-labeled methyl iodide using standard permethylation conditions. Separate aliquots of oligosaccharides from human milk were labeled with (12)C or (13)C methyl iodide; the labeled and non-labeled glycans were mixed in known proportions, and the mixtures analyzed by MS. Results indicated that the isotopic labeling described here was capable of providing relative quantitative data with a dynamic range of at least two orders of magnitude, adequate linearity, and reproducibility with a coefficient of variation that was 13% on average. This procedure was used to analyze N-linked glycans released from various mixtures of glycoproteins, such as alpha-1 acid glycoprotein, human transferrin, and bovine fetuin, using MS techniques that included matrix assisted laser desorption ionization-time of flight MS and electrospray ionization with ion cyclotron resonance-Fourier transformation MS. The measured (12)C:(13)C ratios from mixtures of glycans permethylated with either (12)CH(3)I or (13)CH(3)I were consistent with the theoretical proportions. This technique is an effective procedure for relative quantitative glycan analysis by MS.  相似文献   
46.
Bacillus thuringiensis Cry1Ac insecticidal toxin binds specifically to 120kDa aminopeptidase N (APN) (EC 3.4.11.2) in the epithelial brush border membrane of Manduca sexta midguts. The isolated 120-kDa APN is a member of a functional Cry1 toxin receptor complex (FEBS Lett. 412 (1997) 270). The 120-kDa form is glycosyl-phosphatidylinositol (GPI) anchored and converted to a 115-kDa form upon membrane solubilization. The 115-kDa APN also binds Cry1A toxins and Cry1Ac binding is inhibited by N-acetylgalactosamine (GalNAc). Here we determined the monosaccharide composition of APN. APN is 4.2mol% carbohydrate and contains GalNAc, a residue involved in Cry1Ac interaction. APN remained associated with non-covalently bound lipids through anion-exchange column purification. Most associated lipids were separated from APN by hydrophobic interaction chromatography yielding a lipid aggregate. Chemical analyses of the lipid aggregate separated from APN revealed neutral lipids consisting mostly of diacylglycerol and free fatty acids. The fatty acids were long, unsaturated chains ranging from C:14 to C:22. To test the effect of APN-associated lipids on Cry1Ac function, the lipid aggregate and 115-kDa APN were reconstituted into phosphatidylcholine (PC) vesicles. The lipid aggregate increased the amount of Cry1Ac binding, but binding due to the lipid aggregate was not saturable. In contrast the lipid aggregate promoted Cry1Ac-induced release of 86Rb(+) at the lowest Cry1Ac concentration (50nM) tested. The predominant neutral lipid component extracted from the lipid aggregate promoted Cry1Ac-induced 86Rb(+) release from membrane vesicles in the presence of APN.  相似文献   
47.
Glycans occupy the critical cell surface interface between hematopoietic cells and their marrow niches. Typically, glycosyltransferases reside within the intracellular secretory apparatus, and each cell autonomously generates its own cell surface glycans. In this study, we report an alternate pathway to generate cell surface glycans where remotely produced glycosyltransferases remodel surfaces of target cells and for which endogenous expression of the cognate enzymes is not required. Our data show that extracellular ST6Gal-1 sialyltransferase, originating mostly from the liver and released into circulation, targets marrow hematopoietic stem and progenitor cells (HSPCs) and mediates the formation of cell surface α2,6-linked sialic acids on HSPCs as assessed by binding to the specific lectins Sambucus nigra agglutinin and Polysporus squamosus lectin and confirmed by mass spectrometry. Marrow HSPCs, operationally defined as the Lin−c-Kit+ and Lin−Sca-1+c-Kit+ populations, express negligible endogenous ST6Gal-1. Animals with reduced circulatory ST6Gal-1 have marrow Lin−Sca-1+c-Kit+ cells with reduced S. nigra agglutinin reactivity. Bone marrow chimeras demonstrated that α2,6-sialylation of HSPCs is profoundly dependent on circulatory ST6Gal-1 status of the recipients and independent of the ability of HSPCs to express endogenous ST6Gal-1. Biologically, HSPC abundance in the marrow is inversely related to circulatory ST6Gal-1 status, and this relationship is recapitulated in the bone marrow chimeras. We propose that remotely produced, rather than the endogenously expressed, ST6Gal-1 is the principal modifier of HSPC glycans for α2,6-sialic acids. In so doing, liver-produced ST6Gal-1 may be a potent systemic regulator of hematopoiesis.  相似文献   
48.
The development of safe subunit vaccines requires adjuvants that augment immunogenicity of non-replicating protein-based antigens. Current vaccines against infectious diseases preferentially induce protective antibodies driven by adjuvants such as alum. However, the contribution of antibody to host defense is limited for certain classes of infectious diseases such as fungi, whereas animal studies and clinical observations implicate cellular immunity as an essential component of the resolution of fungal pathogens. Here, we decipher the structural bases of a newly identified glycoprotein ligand of Dectin-2 with potent adjuvancy, Blastomyces endoglucanase-2 (Bl-Eng2). We also pinpoint the developmental steps of antigen-specific CD4+ and CD8+ T responses augmented by Bl-Eng2 including expansion, differentiation and tissue residency. Dectin-2 ligation led to successful systemic and mucosal vaccination against invasive fungal infection and Influenza A infection, respectively. O-linked glycans on Bl-Eng2 applied at the skin and respiratory mucosa greatly augment vaccine subunit- induced protective immunity against lethal influenza and fungal pulmonary challenge.  相似文献   
49.
Toxoplasma gondii, an intracellular parasitic protozoan, is capable of infecting man and all warm-blooded animals. Cell-mediated immunity is vital in mounting protective responses against T. gondii infection. Recent studies have shown that T-helper (Th) 17 responses may play a key role in parasite control. In this current study, we constructed a DNA vaccine encoding T. gondii ROP13 in a pcDNA vector. Groups of BALB/c mice were immunized intramuscularly with pcROP13 or controls and challenged with the RH strain of T. gondii. The results showed that immunization with pcROP13 could elicit an antibody response against T. gondii. The expression of the canonical Th17 cytokines, interleukin (IL)-17 and IL-22, were significantly increased after immunization with pcROP13 compared with control groups ( p < 0.05). Furthermore, vaccination resulted in a significant decrease in parasite load ( p < 0.05). The induction of Th17 related cytokines, using a ROP13 DNA vaccine, against T. gondii should be considered as a potential vaccine approach for the control of toxoplasmosis.  相似文献   
50.
Rat C-reactive protein (CRP) is unique among mammalian CRPs in being a glycoprotein and in containing a covalently linked dimer in its pentameric structure. To investigate these features, cDNA clones encoding rat CRP were isolated from an expression library, and the primary structure of the protein was derived. Taken along with the results of Northern blotting, we conclude that a single mRNA of approximately 2,500 nucleotides codes for a precursor of rat CRP with a signal sequence of 19 amino acids and a polypeptide of 211 amino acids, the latter sharing extensive homology with human, rabbit, and mouse CRPs. The deduced sequence agreed with results obtained from partial microsequencing and mapping by fast atom bombardment-mass spectrometry. Two potential sites for N-glycosylation (Asn-128 and Asn-147) and a C-terminal heptapeptide (Leu-205 to Ser-211, containing two cysteines at positions 208 and 209) were unique to rat CRP. The protein was also shown to be composed of five apparently identical monomers, two of which form a dimer linked by two interchain disulfide bonds involving Cys-208 and Cys-209. These same cysteines form an intrachain disulfide bond in the other three monomers. The primary structure of rat CRP and the basis of dimer formation have, therefore, been elucidated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号