首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   85篇
  免费   4篇
  2022年   1篇
  2021年   1篇
  2020年   4篇
  2019年   1篇
  2018年   5篇
  2017年   1篇
  2016年   8篇
  2015年   5篇
  2014年   7篇
  2013年   11篇
  2012年   8篇
  2011年   8篇
  2010年   6篇
  2009年   4篇
  2008年   2篇
  2007年   3篇
  2006年   4篇
  2004年   2篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
  1998年   1篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
排序方式: 共有89条查询结果,搜索用时 78 毫秒
11.
Modern powerful techniques in plant biotechnology have been developed in lilies (Lilium spp., Liliaceae) to propagate, improve and make new phenotypes. Reliable in vitro culture methods are available to multiply lilies rapidly and shorten breeding programs. Lilium is also an ideal model plant to study in vitro pollination and embryo rescue methods. Although lilies are recalcitrant to genetic manipulation, superior genotypes are developed with improved flower colour and form, disease resistance and year round forcing ability. Different DNA molecular markers have been developed for rapid indirect selection, genetic diversity evaluation, mutation detection and construction of Lilium linkage map. Some disease resistance-QTLs are already mapped on the Lilium linkage map. This review presents latest information on in vitro propagation, genetic engineering and molecular advances made in lily.  相似文献   
12.
A combination of bioassay and biochemical approaches were used to determine toxicity of Artemisia annua essential oil (AaEO) Pseudococcus viburni. AaEO via leaf dipping bioassay showed LC50 values of 0.693 and 0.419% after two time exposures. Different concentrations of AaEO caused deterrence index between 28.58 to 86.26% by the calculated ED50 of 0.4%. Although, α-esterase activity using α-naphtyl acetate increased in the treated nymphs by AaEO after 24 hours but it showed the lower activity in the treated nymphs using β-naphtyl acetate. Glutathione S-transferase assayed by CDNB showed the higher activity in the treated nymphs than control after 24 hours while the adverse results gained not only after 48 hours but also after 24 hours by using DCNB. No significant differences were found in the activity of alanine aminotransferase versus control, but aspartate aminotransferase and γ-glutamyl transferase showed the statistically higher activities in the treated nymphs in comparison with control. Activities of aldolase and lactate dehydrogenase were significantly lower than those of control. Only acid phosphatase showed the significantly altered activity in the treated nymphs in comparison with control after 24 hours. Results of our study indicated significant toxicity, deterrence and physiological effects of AaEO on P. viburni.  相似文献   
13.
Mindin (spondin‐2) is an extracellular matrix protein of unknown structure that is required for efficient T‐cell priming by dendritic cells. Additionally, mindin functions as a pattern recognition molecule for initiating innate immune responses. These dual functions are mediated by interactions with integrins and microbial pathogens, respectively. Mindin comprises an N‐terminal F‐spondin (FS) domain and C‐terminal thrombospondin type 1 repeat (TSR). We determined the structure of the FS domain at 1.8‐Å resolution. The structure revealed an eight‐stranded antiparallel β‐sandwich motif resembling that of membrane‐targeting C2 domains, including a bound calcium ion. We demonstrated that the FS domain mediates integrin binding and identified the binding site by mutagenesis. The mindin FS domain therefore represents a new integrin ligand. We further showed that mindin recognizes lipopolysaccharide (LPS) through its TSR domain, and obtained evidence that C‐mannosylation of the TSR influences LPS binding. Through these dual interactions, the FS and TSR domains of mindin promote activation of both adaptive and innate immune responses.  相似文献   
14.
Inherited retinal degenerations, collectively termed retinitis pigmentosa (RP), constitute one of the leading causes of blindness in the developed world. RP is at present untreatable and the underlying neurodegenerative mechanisms are unknown, even though the genetic causes are often established. Acetylation and deacetylation of histones, carried out by histone acetyltransferases (HATs) and histone deacetylases (HDACs), respectively, affects cellular division, differentiation, death and survival. We found acetylation of histones and probably other proteins to be dramatically reduced in degenerating photoreceptors in the rd1 human homologous mouse model for RP. Using a custom developed in situ HDAC activity assay, we show that overactivation of HDAC classes I/II temporally precedes photoreceptor degeneration. Moreover, pharmacological inhibition of HDACs I/II activity in rd1 organotypic retinal explants decreased activity of poly-ADP-ribose-polymerase and strongly reduced photoreceptor cell death. These findings highlight the importance of protein acetylation for photoreceptor cell death and survival and propose certain HDAC classes as novel targets for the pharmacological intervention in RP.  相似文献   
15.
The presence of marker genes conferring antibiotic or herbicide resistance in transgenic plants has been a controversial issue and a serious problem for their public acceptance and commercialization. The MAT (multi-auto-transformation) vector system has been one of the strategies developed to excise the selection marker gene and produce marker-free transgenic plants. In an attempt to produce transgenic marker-free Petunia hybrida plants resistant to Botrytis cinerea (gray mold), we used the ipt gene as a selectable marker gene and the wasabi defensin (WD) gene, isolated from Wasabia japonica (a Japanese horseradish which has been a potential source of antimicrobial proteins), as a gene of interest. The WD gene was cloned from the binary vector, pEKH-WD, to an ipt-type MAT vector, pMAT21, by gateway cloning technology and transferred to Agrobacterium tumefaciens strain EHA105. Infected leaf explants of P. hybrida were cultured on hormone- and antibiotic-free MS medium. Extreme shooty phenotype (ESP)/ipt shoots were produced by the explants infected with the pMAT21-WD. The same antibiotic- and hormone-free MS medium was used in subcultures of the ipt shoots. Ipt shoots subsequently produced morphologically normal shoots. Molecular analyses of genomic DNA from the transgenic plants confirmed the integration of the gene of interest and excision of the selection marker. Expression of the WD gene was confirmed by northern blot and western blot analyses. A disease resistance assay of the marker-free transgenic plants exhibited enhanced resistance against B. cinerea strain 40 isolated from P. hybrida.  相似文献   
16.
In order to evaluate the effect of inoculation and co-cultivation media elements on transformation frequency in Petunia hybrida, modified MS media with different elements were tested on Alvan and Large Flower Alvan (LF Alvan), two local cultivars. Leaf explants of both cultivars were inoculated with Agrobacterium tumefaciens strain LBA4404 (pBI121) containing neomycin phosphotransferase (nptII) and an intron-containing β-glucuronidase (gus) genes. When medium lacking KH2PO4, NH4NO3, KNO3, and CaCl2 was used as inoculation and co-cultivation medium, a higher frequency of transformation for Alvan (22%) and LF Alvan (16%) was obtained. Kanamycin resistant plantlets were stained blue by GUS assay. Furthermore, polymerase chain reaction (PCR) analysis revealed the presence of both gus and nptII genes in all putative transformants. Finally, southern blot hybridization confirmed insertion of 1–4 copies of gus gene in transgenic plants.  相似文献   
17.
Rose cultivars with blue flower color are among the most attractive breeding targets in floriculture. However, they are difficult to produce due to the low efficiency of transformation systems, interactive effects of hosts and vectors, and lengthy processes. In this study, agroinfiltration-mediated transient expression was investigated as a tool to assess the function of flower color genes and to determine appropriate host cultivars for stable transformation in Rosa hybrida. To induce delphinidin accumulation and consequently to produce blue hue, the petals of 30 rose cultivars were infiltrated with three different expression vectors namely pBIH-35S-CcF3′5′H, pBIH-35S-Del2 and pBIH-35S-Del8, harbouring different sets of flower color genes. The results obtained showed that the ectopic expression of the genes was only detected in three cultivars with dark pink petals (i.e. ‘Purple power’, ‘High & Mora’ and ‘Marina’) after 6–8 days. The high performance liquid chromatography analyses confirmed delphinidin accumulation in the infiltrated petals caused by transient expression of CcF3′5′H gene. Moreover, there were significant differences in the amounts of delphinidin among the three cultivars infiltrated with the three different expression vectors. More specifically, the highest delphinidin content was detected in the cultivar ‘Purple power’ (4.67 µg g?1 FW), infiltrated with the pBIH-35S-Del2 vector. The expression of CcF3′5′H gene in the infiltrated petals was also confirmed by real time PCR. In conclusion and based on the findings of the present study, the agroinfiltration could be regarded as a reliable method to identify suitable rose cultivars in blue rose flower production programs.  相似文献   
18.
The Human Disease Glycomics/Proteome Initiative (HGPI) is an activity in the Human Proteome Organization (HUPO) supported by leading researchers from international institutes and aims at development of disease-related glycomics/glycoproteomics analysis techniques. Since 2004, the initiative has conducted three pilot studies. The first two were N- and O-glycan analyses of purified transferrin and immunoglobulin-G and assessed the most appropriate analytical approach employed at the time. This paper describes the third study, which was conducted to compare different approaches for quantitation of N- and O-linked glycans attached to proteins in crude biological samples. The preliminary analysis on cell pellets resulted in wildly varied glycan profiles, which was probably the consequence of variations in the pre-processing sample preparation methodologies. However, the reproducibility of the data was not improved dramatically in the subsequent analysis on cell lysate fractions prepared in a specified method by one lab. The study demonstrated the difficulty of carrying out a complete analysis of the glycome in crude samples by any single technology and the importance of rigorous optimization of the course of analysis from preprocessing to data interpretation. It suggests that another collaborative study employing the latest technologies in this rapidly evolving field will help to realize the requirements of carrying out the large-scale analysis of glycoproteins in complex cell samples.  相似文献   
19.
An alternative method to other technologies to clean up the soil, air and water pollution by heavy metals is phytoremediation. Therefore, a pot culture experiment was conducted at the College of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran, in 2014 to determine the potential absorption of cadmium by Portulaca oleracea (Common purslane), Solanum nigrum (Black nightshade), Abutilon theophrasti (Velvetleaf) and Taraxacum officinale (Dandelion). The type of experiment was completely randomized design with factorial arrangement and four replications. The soil in pot was treated with different rates of CdCl2.H2O (0 (control), 10, 20, 40, 60, and 80 mg Cd/kg soil) and the plants were sown. With increasing concentration levels, fresh weight and dry weight of shoots and roots of all plant species were reduced. The reduction severity was ranked according the following order, P. oleracea > A. theophrasti > S. nigrum > T. officinale. Bioconcentration factor (BCF), Translocation factor (TF) and Translocation efficiency (TE%) was ranked according the following order, T. officinale > S. nigrum > A. theophrasti > P. oleracea. The results of this study revealed that T. officinale and S. nigrum are effective species to phytoremediate Cd-contaminated soil.  相似文献   
20.
Although some important features of genetically modified (GM) crops such as insect resistance, herbicide tolerance, and drought tolerance might seem to be beneficial for small-scale farmers, the adoption of GM technology by smallholders is still slight. Identifying pros and cons of using this technology is important to understand the impacts of GM crops on these farmers. This article reviews the main opportunities and challenges of GM crops for small-scale farmers in developing countries. The most significant advantages of GM crops include being independent to farm size, environment protection, improvement of occupational health issues, and the potential of bio-fortified crops to reduce malnutrition. Challenges faced by small-scale farmers for adoption of GM crops comprise availability and accessibility of GM crop seeds, seed dissemination and price, and the lack of adequate information. In addition, R&D and production costs in using GM crops make it difficult for these farmers to adopt the use of these crops. Moreover, intellectual property right regulations may deprive resource poor farmers from the advantages of GM technology. Finally, concerns on socio-economic and environment safety issues are also addressed in this paper.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号