首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   378篇
  免费   15篇
  2024年   2篇
  2023年   2篇
  2022年   4篇
  2021年   11篇
  2020年   7篇
  2019年   6篇
  2018年   7篇
  2017年   5篇
  2016年   12篇
  2015年   15篇
  2014年   12篇
  2013年   13篇
  2012年   25篇
  2011年   21篇
  2010年   23篇
  2009年   20篇
  2008年   16篇
  2007年   22篇
  2006年   17篇
  2005年   17篇
  2004年   14篇
  2003年   19篇
  2002年   13篇
  2001年   10篇
  2000年   4篇
  1999年   10篇
  1998年   6篇
  1997年   4篇
  1996年   3篇
  1995年   2篇
  1994年   2篇
  1992年   4篇
  1991年   3篇
  1990年   2篇
  1989年   3篇
  1988年   3篇
  1987年   3篇
  1986年   2篇
  1985年   3篇
  1984年   3篇
  1983年   3篇
  1982年   2篇
  1980年   3篇
  1974年   2篇
  1972年   1篇
  1970年   3篇
  1969年   1篇
  1968年   1篇
  1966年   1篇
  1964年   3篇
排序方式: 共有393条查询结果,搜索用时 15 毫秒
101.
XLF/Cernunnos is a core protein of the nonhomologous end-joining pathway of DNA double-strand break repair. To better define the role of Cernunnos in end joining, whole-cell extracts were prepared from Cernunnos-deficient human cells. These extracts effected little joining of DNA ends with cohesive 5′ or 3′ overhangs, and no joining at all of partially complementary 3′ overhangs that required gap filling prior to ligation. Assays in which gap-filled but unligated intermediates were trapped using dideoxynucleotides revealed that there was no gap filling on aligned DSB ends in the Cernunnos-deficient extracts. Recombinant Cernunnos protein restored gap filling and end joining of partially complementary overhangs, and stimulated joining of cohesive ends more than twentyfold. XLF-dependent gap filling was nearly eliminated by immunodepletion of DNA polymerase λ, but was restored by addition of either polymerase λ or polymerase μ. Thus, Cernunnos is essential for gap filling by either polymerase during nonhomologous end joining, suggesting that it plays a major role in aligning the two DNA ends in the repair complex.  相似文献   
102.
Soil salinity and sodicity are major constraints to rice production in about twenty per cent of the irrigated crop land. Inbuilt genetic tolerance to salinity is the most economical and environmentally sustainable way to solve this problem. A mapping population of 200 F2 plants and their corresponding F3 families, derived from a cross between a salt tolerant indica rice variety CSR27 and a salt sensitive variety MI48 were used to map OTLs for salt tolerance. Seventeen different parameters, including seedling salt injury score, Na+, K+, CI? concentrations and Na+/K+ ratio in leaf and stem tissues at vegetative and reproductive stages were mapped. A framework linkage map was constructed using 79 SSR and EST markers distributed over the twelve rice chromosomes at an average interval of 20.7cM and total map distance of 1634.5 cM. Twenty five major OTLs, each explaining more than ten per cent of the trait phenotypic variance, were mapped on chromosomes 1, 2, 3 and 8. These included one OTL for seedling salt injury score, nine for Na+ concentration, three for K+ concentration and four for Cl? concentration in leaf and stem tissues at vegetative and reproductive stages. The Na+/K+ ratio, an important ion balancing parameter for the salt tolerance, was controlled by eight OTLs explaining phenotypic variance in the range of 42.88–52.63%. Four OTL intervals were robust with major effect and having OTLs for multiple salt tolerance parameters that might be governed by common or tightly linked genes. One major OTL for multiple salt tolerance parameters on chromosome 8 and three major OTLs for CI? ion concentration are novel for this study. The OTLs identified here will serve as a base for fine mapping, gene tagging and marker assisted selection for salt tolerance in rice.  相似文献   
103.
Change of plant type in rice resulting in increased compactness of the panicle, allows space for accommodation of a larger number of spikelets, but grain yield does not increase proportionately because of limitations in grain filling. The objective of this study was to evaluate potential causes of poor filling of spikelets by comparing the physiological processes that influence source and sink activities between a compact- (OR-1920-7) and a loose-panicled (Lalat) rice cultivars growing in the open field conditions in the farm of Regional Research and Technology Transfer Station, Orissa University of Agriculture and Technology, Chiplima, India during dry season of 2007. Although grain number per unit length of the branches was higher in the compact-panicled cultivar than the loose-panicled cultivar, average grain weight was lower on the primary and secondary branches at top, middle and basal positions of the panicle in the former compared to the corresponding positions of the panicle in the latter. Compared to Lalat, ethylene production rate was considerably higher in the boot of the flag leaf sheath of OR-1920-7 during the pre-anthesis period. Ethylene evolution rate correlated negatively with growth and cell division rates and starch concentration of the juvenile endosperm. Because spikelet growth was slower in OR-1920-7 than in Lalat, unused carbohydrates accumulated in the endosperm. The stomatal conductance of the flag leaf during this period was also lower in the former than that of the latter and it correlated negatively with ethylene evolution rate of the boot. It is concluded that high ethylene production slackened grain filling of compact-panicled rice cultivar OR-1920-7 because of its adverse influence on both source and sink activities.  相似文献   
104.

Background

Atrial natriuretic peptide (ANP) and its receptor, NPRA, have been extensively studied in terms of cardiovascular effects. We have found that the ANP-NPRA signaling pathway is also involved in airway allergic inflammation and asthma. ANP, a C-terminal peptide (amino acid 99–126) of pro-atrial natriuretic factor (proANF) and a recombinant peptide, NP73-102 (amino acid 73–102 of proANF) have been reported to induce bronchoprotective effects in a mouse model of allergic asthma. In this report, we evaluated the effects of vessel dilator (VD), another N-terminal natriuretic peptide covering amino acids 31–67 of proANF, on acute lung inflammation in a mouse model of allergic asthma.

Methods

A549 cells were transfected with pVD or the pVAX1 control plasmid and cells were collected 24 hrs after transfection to analyze the effect of VD on inactivation of the extracellular-signal regulated receptor kinase (ERK1/2) through western blot. Luciferase assay, western blot and RT-PCR were also performed to analyze the effect of VD on NPRA expression. For determination of VD''s attenuation of lung inflammation, BALB/c mice were sensitized and challenged with ovalbumin and then treated intranasally with chitosan nanoparticles containing pVD. Parameters of airway inflammation, such as airway hyperreactivity, proinflammatory cytokine levels, eosinophil recruitment and lung histopathology were compared with control mice receiving nanoparticles containing pVAX1 control plasmid.

Results

pVD nanoparticles inactivated ERK1/2 and downregulated NPRA expression in vitro, and intranasal treatment with pVD nanoparticles protected mice from airway inflammation.

Conclusion

VD''s modulation of airway inflammation may result from its inactivation of ERK1/2 and downregulation of NPRA expression. Chitosan nanoparticles containing pVD may be therapeutically effective in preventing allergic airway inflammation.  相似文献   
105.
106.
A new class of copper(II) nanohybrid solids, LCu(CH3COO)2 and LCuCl2, have been synthesized and characterized by transmission electron microscopy, dynamic light scattering, and IR spectroscopy, and have been found to be capped by a bis(benzimidazole) diamide ligand (L). The particle sizes of these nanohybrid solids were found to be in the ranges 5–10 and 60–70 nm, respectively. These nanohybrid solids were evaluated for their in vitro antimalarial activity against a chloroquine-sensitive isolate of Plasmodium falciparum (MRC 2). The interactions between these nanohybrid solids and plasmepsin II (an aspartic protease and a plausible novel target for antimalarial drug development), which is believed to be essential for hemoglobin degradation by the parasite, have been assayed by UV–vis spectroscopy and inhibition kinetics using Lineweaver–Burk plots. Our results suggest that these two compounds have antimalarial activities, and the IC50 values (0.025–0.032 μg/ml) are similar to the IC50 value of the standard drug chloroquine used in the bioassay. Lineweaver–Burk plots for inhibition of plasmepsin II by LCu(CH3COO)2 and LCuCl2 show that the inhibition is competitive with respect to the substrate. The inhibition constants of LCu(CH3COO)2 and LCuCl2 were found to be 10 and 13 μM, respectively. The IC50 values for inhibition of plasmepsin II by LCu(CH3COO)2 and LCuCl2 were found to be 14 and 17 μM, respectively. Copper(II) metal capped by a benzimidazole group, which resembles the histidine group of copper proteins (galactose oxidase, β-hydroxylase), could provide a suitable anchoring site on the nanosurface and thus could be useful for inhibition of target enzymes via binding to the S1/S3 pocket of the enzyme hydrophobically. Both copper(II) nanohybrid solids were found to be nontoxic against human hepatocellular carcinoma cells and were highly selective for plasmepsin II versus human cathepsin D. The pivotal mechanism of antimalarial activity of these compounds via plasmepsin II inhibition in the P. falciparum malaria parasite is demonstrated.  相似文献   
107.
A link between senescence‐induced decline in photosynthesis and activity of β‐glucosidase is examined in the leaves of Arabidopsis. The enzyme is purified and characterized. The molecular weight of the enzyme is 58 kDa. It shows maximum activity at pH 5.5 and at temperature of 50°C. Photosynthetic measurements and activity of the enzyme are conducted at different developmental stages including senescence of leaves. Senescence causes a significant loss in total chlorophyll, stomatal conductance, rate of evaporation and in the ability of the leaves for carbon dioxide fixation. The process also brings about a decline in oxygen evolution, quantum yield of photosystem II (PS II) and quantum efficiency of PS II photochemistry of thylakoid membrane. The loss in photosynthesis is accompanied by a significant increase in the activity of the cell wall‐bound β‐glucosidase that breaks down polysaccharides to soluble sugars. The loss in photosynthesis as a signal for the enhancement in the activity of the enzyme is confirmed from the observation that incubation of excised mature leaves in continuous dark or in light with a photosynthesis inhibitor 3‐(3,4‐dichlorophenyl)‐1, 1‐dimethylurea (DCMU) that leads to sugar starvation enhances the activity of the enzyme. The work suggests that in the background of photosynthetic decline, the polysaccharides bound to cell wall that remains intact even during late phase of senescence may be the last target of senescing leaves for a possible source of sugar for remobilization and completion of the energy‐dependent senescence program.  相似文献   
108.
Short hot and dry spells before, or during, silking have an inordinately large effect on maize (Zea mays L.; corn) grain yield. New high yielding genotypes could be developed if the mechanism of yield loss were more fully understood and new assays developed. The aim here was to determine the effects of high temperature (35/27 °C) compared to cooler (25/18 °C) temperatures (day/night). Stress was applied for a 14 d-period during reproductive stages prior to silking. Effects on whole plant biomass, ear development, photosynthesis and carbohydrate metabolism were measured in both dent and sweet corn genotypes. Results showed that the whole plant biomass was increased by the high temperature. However, the response varied among plant parts; in leaves and culms weights were slightly increased or stable; cob weights decreased; and other ear parts of dent corn also decreased by high temperature. Photosynthetic activity was not affected by the treatments. The 13C export rate from an ear leaf was decreased by the high temperature treatment. The amount of 13C partitioning to the ears decreased more than to other plant parts by the high temperature. Within the ear decreases were greatest in the cob than the shank within an ear. Sugar concentrations in both hemicellulose and cellulose fractions of cobs in sweet corn were decreased by high temperature, and the hemicellulose fraction in the shank also decreased. In dent corn there was no reduction of sugar concentration except in the in cellulose fraction, suggesting that synthesis of cell-wall components is impaired by high temperatures. The high temperature treatment promoted the growth of vegetative plant parts but reduced ear expansion, particularly suppression of cob extensibility by impairing hemicellulose and cellulose synthesis through reduction of photosynthate supply. Therefore, plant biomass production was enhanced and grain yield reduced by the high temperature treatment due to effects on sink activity rather than source activity. Heat resistant ear development can be targeted for genetic improvement  相似文献   
109.
The diamine putrescine (Put) has been shown to accumulate in tree leaves in response to high Al and low Ca in the soil, leading to the suggestion that this response may provide a physiological advantage to leaf cells under conditions of Al stress. The increase in Put is reversed by Ca supplementation in the soil. Using two cell lines of poplar (Populus nigra × maximowiczii), one with constitutively high Put (resulting from transgenic expression of a mouse ornithine decarboxylase – called HP cells) and the other with low Put (control cells), we investigated the effects of reduced Ca (0.2–0.8 mM vs. 4 mM) and treatment with 0.1 mM Al on several biochemical parameters of cells. We found that in the presence of reduced Ca concentration, the HP cells were at a disadvantage as compared to control cells in that they showed greater reduction in mitochondrial activity and a reduction in the yield of cell mass. Upon addition of Al to the medium, the HP cells, however, showed a reversal of low-Ca effects. We conclude that due to increased ROS production in the HP cells, their tolerance to low Ca is compromised. Contrary to the expectation of deleterious effects, the HP cells showed an apparent advantage in the presence of Al in the medium, which could have come from reduced uptake of Al, enhanced extrusion of Al following its accumulation, and perhaps a reduction in Put catabolism as a result of a reduction in its biosynthesis.  相似文献   
110.
Acute respiratory syncytial virus (RSV) infection causes airway inflammation and exacerbates asthma, but the mechanism of inflammation is poorly understood. The role of the STAT-signaling pathway in RSV infection in epithelial cells was examined in this study. DNA microarray analyses of RSV-infected human alveolar type II (A549) epithelial cells identified several genes whose expression was altered from -5.5 to +56.4-fold. Four of the highly expressed genes contained STAT-binding elements. In A549 and normal human bronchial epithelial cells (NHBE), RSV induced phosphorylation and nuclear translocation of STAT-1alpha that was abrogated when RSV attachment was blocked. Treatment with a JAK-2 inhibitor or transfection with dominant-negative STAT-1alpha blocked STAT-1alpha activation and RSV infection. RSV also activated STAT-3 and IL-6 specific antibodies blocked this activation. Thus, activation of the STAT-1alpha and STAT-3 pathways play a role in RSV infection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号