首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   75篇
  免费   3篇
  2021年   3篇
  2020年   2篇
  2019年   2篇
  2018年   3篇
  2017年   3篇
  2016年   1篇
  2015年   4篇
  2014年   9篇
  2013年   7篇
  2012年   1篇
  2011年   8篇
  2010年   4篇
  2009年   2篇
  2008年   2篇
  2007年   8篇
  2006年   4篇
  2005年   3篇
  2004年   1篇
  2003年   3篇
  2002年   2篇
  2001年   1篇
  1995年   1篇
  1994年   1篇
  1991年   1篇
  1989年   1篇
  1978年   1篇
排序方式: 共有78条查询结果,搜索用时 265 毫秒
31.
Zeta-crystallin/quinone reductase (CRYZ) is an NADPH oxidoreductase expressed at very high levels in the lenses of two groups of mammals: camelids and some hystricomorph rodents. It is also expressed at very low levels in all other species tested. Comparative analysis of the mechanisms mediating the high expression of this enzyme/crystallin in the lens of the Ilama (Lama guanacoe) and the guinea pig (Cavia porcellus) provided evidence for independent recruitment of this enzyme as a lens crystallin in both species and allowed us to elucidate for the first time the mechanism of lens recruitment of an enzyme- crystallin. The data presented here show that in both species such recruitment most likely occurred through the generation of new lens promoters from nonfunctional intron sequences by the accumulation of point mutations and/or small deletions and insertions. These results further support the idea that recruitment of CRYZ resulted from an adaptive process in which the high expression of CRYZ in the lens provides some selective advantage rather than from a purely neutral evolutionary process.   相似文献   
32.
33.
34.
KSHV is etiologically associated with Kaposi's sarcoma (KS), an angioproliferative endothelial cell malignancy. Macropinocytosis is the predominant mode of in vitro entry of KSHV into its natural target cells, human dermal microvascular endothelial (HMVEC-d) cells. Although macropinocytosis is known to be a major route of entry for many viruses, the molecule(s) involved in the recruitment and integration of signaling early during macropinosome formation is less well studied. Here we demonstrate that tyrosine phosphorylation of the adaptor protein c-Cbl is required for KSHV induced membrane blebbing and macropinocytosis. KSHV induced the tyrosine phosphorylation of c-Cbl as early as 1 min post-infection and was recruited to the sites of bleb formation. Infection also led to an increase in the interaction of c-Cbl with PI3-K p85 in a time dependent manner. c-Cbl shRNA decreased the formation of KSHV induced membrane blebs and macropinocytosis as well as virus entry. Immunoprecipitation of c-Cbl followed by mass spectrometry identified the interaction of c-Cbl with a novel molecular partner, non-muscle myosin heavy chain IIA (myosin IIA), in bleb associated macropinocytosis. Phosphorylated c-Cbl colocalized with phospho-myosin light chain II in the interior of blebs of infected cells and this interaction was abolished by c-Cbl shRNA. Studies with the myosin II inhibitor blebbistatin demonstrated that myosin IIA is a biologically significant component of the c-Cbl signaling pathway and c-Cbl plays a new role in the recruitment of myosin IIA to the blebs during KSHV infection. Myosin II associates with actin in KSHV induced blebs and the absence of actin and myosin ubiquitination in c-Cbl ShRNA cells suggested that c-Cbl is also responsible for the ubiquitination of these proteins in the infected cells. This is the first study demonstrating the role of c-Cbl in viral entry as well as macropinocytosis, and provides the evidence that a signaling complex containing c-Cbl and myosin IIA plays a crucial role in blebbing and macropinocytosis during viral infection and suggests that targeting c-Cbl could lead to a block in KSHV infection.  相似文献   
35.
Kaposi''s sarcoma-associated herpesvirus (KSHV) interacts with human dermal endothelial cell surface tyrosine kinase EphrinA2 (EphA2) and integrins (α3β1 and αVβ3) in the lipid raft (LR) region, and EphA2 regulates macropinocytic virus entry by coordinating integrin-c-Cbl associated signaling. In contrast, KSHV enters human foreskin fibroblast (HFF) cells by LR-independent clathrin mediated endocytosis. The present studies conducted to identify the key molecules regulating KSHV entry in HFF cells showed that KSHV induces association with integrins (αVβ5, αVβ3 and α3β1) and EphA2 in non-LR regions early during infection and activates EphA2, which in turn associates with phosphorylated c-Cbl, myosin IIA, FAK, Src, and PI3-K, as well as clathrin and its adaptor AP2 and effector Epsin-15 proteins. EphA2 knockdown significantly reduced these signal inductions, virus internalization and gene expression. c-Cbl knockdown ablated the c-Cbl mediated K63 type polyubiquitination of EphA2 and clathrin association with EphA2 and KSHV. Mutations in EphA2''s tyrosine kinase domain (TKD) or sterile alpha motif (SAM) abolished its interaction with c-Cbl. Mutations in tyrosine kinase binding (TKB) or RING finger (RF) domains of c-Cbl resulted in very poor association of c-Cbl with EphA2 and decreased EphA2 polyubiquitination. These studies demonstrated the contributions of these domains in EphA2 and c-Cbl association, EphA2 polyubiquitination and virus-EphA2 internalization. Collectively, these results revealed for the first time that EphA2 influences the tyrosine phosphorylation of clathrin, the role of EphA2 in clathrin mediated endocytosis of a virus, and c-Cbl mediated EphA2 polyubiquitination directing KSHV entry in HFF cells via coordinated signal induction and progression of endocytic events, all of which suggest that targeting EphA2 and c-Cbl could block KSHV entry and infection.  相似文献   
36.
Angiogenin (ANG) is a 14-kDa multifunctional proangiogenic secreted protein whose expression level correlates with the aggressiveness of several tumors. We observed increased ANG expression and secretion in endothelial cells during de novo infection with Kaposi''s sarcoma-associated herpesvirus (KSHV), in cells expressing only latency-associated nuclear antigen 1 (LANA-1) protein, and in KSHV latently infected primary effusion lymphoma (PEL) BCBL-1 and BC-3 cells. Inhibition of phospholipase Cγ (PLCγ) mediated ANG''s nuclear translocation by neomycin, an aminoglycoside antibiotic (not G418-neomicin), resulted in reduced KSHV latent gene expression, increased lytic gene expression, and increased cell death of KSHV+ PEL and endothelial cells. ANG detection in significant levels in KS and PEL lesions highlights its importance in KSHV pathogenesis. To assess the in vivo antitumor activity of neomycin and neamine (a nontoxic derivative of neomycin), BCBL-1 cells were injected intraperitoneally into NOD/SCID mice. We observed significant extended survival of mice treated with neomycin or neamine. Markers of lymphoma establishment, such as increases in animal body weight, spleen size, tumor cell spleen infiltration, and ascites volume, were observed in nontreated animals and were significantly diminished by neomycin or neamine treatments. A significant decrease in LANA-1 expression, an increase in lytic gene expression, and an increase in cleaved caspase-3 were also observed in neomycin- or neamine-treated animal ascitic cells. These studies demonstrated that ANG played an essential role in KSHV latency maintenance and BCBL-1 cell survival in vivo, and targeting ANG function by neomycin/neamine to induce the apoptosis of cells latently infected with KSHV is an attractive therapeutic strategy against KSHV-associated malignancies.  相似文献   
37.
Mauran (MR), a highly polyanionic sulfated exopolysaccharide was extracted from moderately halophilic bacterium; Halomonas maura and characterized using X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. Purified MR was evaluated for antioxidant defense mechanisms under in vitro conditions using L929, mouse fibroblast cell line and mice liver homogenate. It was demonstrated that MR could impart protective effect against oxidative stress in both cells and tissue up to a concentration of 500 μg, which is found to be safe under laboratory conditions. Various enzymatic and non-enzymatic parameters of antioxidant mechanisms were evaluated and concluded that MR has the tendency to maintain a balance of antioxidative enzymes with in the test systems studied. Also, hemocompatibility assay performed revealed that MR has a lesser hemolytic index and exhibited a prolonged clotting time, which shows both antihemolytic, and antithrombogenic nature respectively. Furthermore, absorption studies performed using fluorescent-labeled MR confirmed that MR accumulated within the cell cytoplasm neither induced cellular lysis nor affected the cell integrity.  相似文献   
38.
Abstract

Microbial degradation of the oil soluble corrosion inhibitor (OSCI) Baker NC 351 contributed to a decrease in inhibitor efficiency. Corrosion inhibition efficiency was studied by the rotating cage and flow loop methods. The nature of the biodegradation of the corrosion inhibitor was also analysed using Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy and gas chromatography-mass spectrometry. The influence of bacterial activity on the degradation of the corrosion inhibitor and its influence on corrosion of API 5LX were evaluated using a weight loss technique and impedance studies. Serratia marcescens ACE2 and Bacillus cereus ACE4 can degrade aromatic and aliphatic hydrocarbons present in the corrosion inhibitor. The present study also discusses the demerits of the oil soluble corrosion inhibitors used in petroleum product pipeline.  相似文献   
39.
During target cell entry and infection, many enveloped and nonenveloped viruses utilize cell surface receptors that translocate into lipid rafts (LRs). However, the mechanism behind this translocation is not known. Kaposi's sarcoma-associated herpesvirus (KSHV) interacts with the human microvascular dermal endothelial (HMVEC-d) cell surface heparan sulfate (HS), integrins α3β1, αVβ3, and αVβ5, and the amino acid transporter x-CT protein and enters via c-Cbl-bleb-mediated macropinocytosis (Veettil et al., J. Virol. 82:12126-12144, 2008; Veettil et al., PLoS Pathog. 6:e1001238, 2010). Here we have demonstrated that very early during infection (1 min postinfection), c-Cbl induced the selective translocation of KSHV into the LR along with the α3β1, αVβ3, and x-CT receptors but not αVβ5. Activated c-Cbl localized with LRs at the junctional base of macropinocytic blebs. LR-translocated α3β1 and αVβ3 were monoubiquitinated, leading to productive macropinocytic entry, whereas non-LR-associated αVβ5 was polyubiquitinated, leading to clathrin entry that was targeted to lysosomes. c-Cbl knockdown blocked the macropinocytosis and receptor translocation and diverted KSHV to a clathrin-lysosomal noninfectious pathway. Similar results were also seen by LR disruption with MβCD. These studies provide the first evidence that c-Cbl regulates selective KSHV-α3β1, -αVβ3, and -x-CT receptor translocations into the LRs and differential ubiquitination of receptors which are critical determinants of the macropinocytic entry route and productive infection of KSHV. Our studies suggest that interventions targeting c-Cbl and LRs are potential avenues to block KSHV infection of endothelial cells.  相似文献   
40.
Inflammasomes are cytoplasmic sensors of foreign molecules, including pathogens, and function to induce caspase-1 activation and IL-1β cytokine maturation. Whether such a mechanism exists in the nucleus and is effective against nuclear replicating pathogens is unknown. Nuclear replicating herpesvirus KSHV is associated with Kaposi Sarcoma, an angioproliferative tumor characterized by an inflammatory microenvironment including IL-1β. We demonstrate that during KSHV infection of endothelial cells, interferon gamma-inducible protein 16 (IFI16) interacts with the adaptor molecule ASC and procaspase-1 to form a functional inflammasome. This complex was initially detected in the nucleus and subsequently in the perinuclear area. KSHV gene expression and/or latent KSHV genome is required for inflammasome activation and IFI16 colocalizes with the KSHV genome in the infected cell nucleus. Caspase-1 activation by KSHV was reduced by IFI16 and ASC silencing. Our studies reveal IFI16 as a nuclear pathogen sensor and demonstrate that the inflammasome also functions in the nucleus.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号