首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2316篇
  免费   111篇
  国内免费   3篇
  2023年   16篇
  2022年   31篇
  2021年   49篇
  2020年   38篇
  2019年   43篇
  2018年   50篇
  2017年   29篇
  2016年   75篇
  2015年   94篇
  2014年   107篇
  2013年   167篇
  2012年   169篇
  2011年   194篇
  2010年   100篇
  2009年   90篇
  2008年   114篇
  2007年   115篇
  2006年   115篇
  2005年   109篇
  2004年   85篇
  2003年   78篇
  2002年   80篇
  2001年   39篇
  2000年   37篇
  1999年   35篇
  1998年   18篇
  1997年   16篇
  1996年   12篇
  1995年   18篇
  1994年   13篇
  1993年   16篇
  1992年   26篇
  1991年   20篇
  1990年   17篇
  1989年   20篇
  1988年   24篇
  1987年   16篇
  1986年   14篇
  1985年   18篇
  1984年   11篇
  1983年   10篇
  1982年   11篇
  1981年   12篇
  1980年   10篇
  1979年   8篇
  1978年   8篇
  1977年   8篇
  1976年   6篇
  1975年   6篇
  1974年   9篇
排序方式: 共有2430条查询结果,搜索用时 78 毫秒
111.
Glycosaminoglycan (GAG)-bound and soluble chemokine gradients in the vasculature and extracellular matrix mediate neutrophil recruitment to the site of microbial infection and sterile injury in the host tissue. However, the molecular principles by which chemokine-GAG interactions orchestrate these gradients are poorly understood. This, in part, can be directly attributed to the complex interrelationship between the chemokine monomer-dimer equilibrium and binding geometry and affinities that are also intimately linked to GAG length. To address some of this missing knowledge, we have characterized the structural basis of heparin binding to the murine CXCL1 dimer. CXCL1 is a neutrophil-activating chemokine and exists as both monomers and dimers (Kd = 36 μm). To avoid interference from monomer-GAG interactions, we designed a trapped dimer (dCXCL1) by introducing a disulfide bridge across the dimer interface. We characterized the binding of GAG heparin octasaccharide to dCXCL1 using solution NMR spectroscopy. Our studies show that octasaccharide binds orthogonally to the interhelical axis and spans the dimer interface and that heparin binding enhances the structural integrity of the C-terminal helical residues and stability of the dimer. We generated a quadruple mutant (H20A/K22A/K62A/K66A) on the basis of the binding data and observed that this mutant failed to bind heparin octasaccharide, validating our structural model. We propose that the stability enhancement of dimers upon GAG binding regulates in vivo neutrophil trafficking by increasing the lifetime of “active” chemokines, and that this structural knowledge could be exploited for designing inhibitors that disrupt chemokine-GAG interactions and neutrophil homing to the target tissue.  相似文献   
112.
113.
This study was undertaken to investigate the effects of salicylic acid (SA) and methyl jasmonate (MeJA) on anthocyanin induction, biomass accumulation, and color value (CV) indices for both pigment content (PC) and pigment production (PP) in callus cultures of Rosa hybrida cv. Pusa Ajay. A concentration-dependent response was exhibited by cultures on SA and MeJA at different concentrations individually or in combinations to Euphorbia millii medium supplemented with 204.5 mM sucrose, 2.45 μM indole butyric acid and 2.33 μM kinetin. There was positive influence on both callus biomass and anthocyanin accumulation. Treatment with 0.5 μM MeJA was most effective in inducing anthocyanin biosynthesis in callus cultures. Anthocyanin accumulation in callus cultures was enhanced with the addition of SA and MeJA, but these did not differ significantly from control for the number of days required for pigment initiation and for color intensification. Moreover, the addition of 0.5 μM MeJA alone resulted in a higher frequency of color response (97.25 %), PC (3.48 ± 0.07 CV g?1 FW), and PP (1.56 ± 0.03 CV test tube?1) over control. In contrast, the presence of higher levels of SA (400 μM) and MeJA (5.0 μM) reduced frequency of color response, as well as levels of PC and PP. MeJA did not increase biomass accumulation but promoted frequency of color response, PC and PP. Hence, it was suggested that 0.5 μM MeJA promoted anthocyanin production in rose callus cultures. Significant correlation was found between frequency of response and each of the PC (r = 0.988) and PP (r = 0.990). Furthermore, PC and PP were also highly correlated (r = 0.998).  相似文献   
114.
Telomere shortening is emerging as a biological indicator of accelerated aging and aging-related diseases including type 2 diabetes. While telomere length measurements were largely done in white blood cells, there is lack of studies on telomere length in relation to oxidative stress in target tissues affected in diabetes. Therefore, the aim of this study is to induct oxidative stress in adipocytes and to test whether these adipocytes exhibit shortened telomeres, senescence and functional impairment. 3T3-L1 adipocytes were subjected to oxidative stress and senescence induction by a variety of means for 2 weeks (exogenous application of H2O2, glucose oxidase, asymmetric dimethylarginine (ADMA) and glucose oscillations). Cells were probed for reactive oxygen species generation (ROS), DNA damage, mRNA and protein expression of senescent and pro-inflammatory markers, telomere length and glucose uptake. Compared to untreated cells, both ROS generation and DNA damage were significantly higher in cells subjected to oxidative stress and senescence. Adipocytes subjected to oxidative stress also showed shortened telomeres and increased mRNA and protein expression of p53, p21, TNFα and IL-6. Senescent cells were also characterized by decreased levels of adiponectin and impaired glucose uptake. Briefly, adipocytes under oxidative stress exhibited increased ROS generation, DNA damage, shortened telomeres and switched to senescent/pro-inflammatory phenotype with impaired glucose uptake.  相似文献   
115.
Actin is a key cytoskeletal protein with multiple roles in cellular processes such as polarized growth, cytokinesis, endocytosis, and cell migration. Actin is present in all eukaryotes as highly dynamic filamentous structures, such as linear cables and branched filaments. Detailed investigation of the molecular role of actin in various processes has been hampered due to the multifunctionality of the protein and the lack of alleles defective in specific processes. The actin cytoskeleton of the fission yeast, Schizosaccharomyces pombe, has been extensively characterized and contains structures analogous to those in other cell types. In this study, primarily with the view to uncover actin function in cytokinesis, we generated a large bank of fission yeast actin mutants that affect the organization of distinct actin structures and/or discrete physiological functions of actin. Our screen identified 17 mutants with specific defects in cytokinesis. Some of these cytokinesis mutants helped in dissecting the function of specific actin structures during ring assembly. Further genetic analysis of some of these actin mutants revealed multiple genetic interactions with mutants previously known to affect the actomyosin ring assembly. We also characterize a mutant allele of actin that is suppressed upon overexpression of Cdc8p-tropomyosin, underscoring the utility of this mutant bank. Another 22 mutant alleles, defective in polarized growth and/or other functions of actin obtained from this screen, are also described in this article. This mutant bank should be a valuable resource to study the physiological and biochemical functions of actin.  相似文献   
116.

BACKGROUND:

Mental retardation (MR) is a heterogeneous dysfunction of the central nervous system exhibiting complex phenotypes and has an estimated prevalence of 1-3% in the general population. However, in about 50% of the children diagnosed with any form of intellectual disability or developmental delay the cause goes undetected contributing to idiopathic intellectual disability.

MATERIALS AND METHODS:

A total of 122 children with developmental delay/MR were studied to identify the microscopic and submicroscopic chromosome rearrangements by using the conventional cytogenetics and multiplex ligation dependent probe amplification (MLPA) analysis using SALSA MLPA kits from Microbiology Research Centre Holland [MRC] Holland.

RESULTS:

All the recruited children were selected for this study, after thorough clinical assessment and metaphases prepared were analyzed by using automated karyotyping system. None was found to have chromosomal abnormality; MLPA analysis was carried out in all subjects and identified in 11 (9%) patients.

CONCLUSION:

Karyotype analysis in combination with MLPA assays for submicroscopic micro-deletions may be recommended for children with idiopathic MR.  相似文献   
117.
Intracellular total soluble proteins of Beauveria bassiana are believed to play an important role in virulence against insect hosts. Thirty B. bassiana isolates collected from different geographical regions and host ranges were characterised by total soluble proteins present in cells, using the SDS–PAGE technique to differentiate the isolates based on virulence and host insect origin. In vitro analysis of total soluble protein profiles of 30 isolates was studied to understand the relationship of isolates with their host of origin and virulence against Helicoverpa armigera. There was a positive relationship between virulence and host origin. All the non-virulent isolates are grouped together. Similarly, highly virulent isolates against H. armigera were grouped together. The relationship between total soluble proteins and pathogenicity was positively correlated. Thirty isolates shared only 22% similarity in their protein profiles.  相似文献   
118.
In the present investigation, daily variations in plasma levels of melatonin, testosterone and estradiol-17β were analysed in the tropical freshwater catfish, Clarias batrachus during early and late-preparatory, pre-spawning, late-spawning and post-spawning phases of its annual reproductive cycle. Plasma melatonin levels exhibited a significant circadian rhythm during all the reproductive phases but peaks were invariably at night. The amplitude of melatonin was high during the early-preparatory phase and low in the pre-spawning phase. Testosterone also displayed significant rhythm during all the studied phases except post spawning phase. Estradiol-17β revealed diurnal rhythm only during preparatory and pre-spawning phases. The peak in the levels of plasma testosterone and estradiol-17β were recorded during the photophase. During the late-preparatory phase, the rhythm of testosterone coincided with the rhythm of estradiol-17β.  相似文献   
119.
120.
Alzheimer’s disease is a progressive neurodegenerative disease that entails impairments of memory, thinking and behavior and culminates into brain atrophy. Impaired glucose uptake (accumulating into energy deficits) and synaptic plasticity have been shown to be affected in the early stages of Alzheimer’s disease. This study examines the ability of lipoic acid to increase brain glucose uptake and lead to improvements in synaptic plasticity on a triple transgenic mouse model of Alzheimer’s disease (3xTg-AD) that shows progression of pathology as a function of age; two age groups: 6 months (young) and 12 months (old) were used in this study. 3xTg-AD mice fed 0.23% w/v lipoic acid in drinking water for 4 weeks showed an insulin mimetic effect that consisted of increased brain glucose uptake, activation of the insulin receptor substrate and of the PI3K/Akt signaling pathway. Lipoic acid supplementation led to important changes in synaptic function as shown by increased input/output (I/O) and long term potentiation (LTP) (measured by electrophysiology). Lipoic acid was more effective in stimulating an insulin-like effect and reversing the impaired synaptic plasticity in the old mice, wherein the impairment of insulin signaling and synaptic plasticity was more pronounced than those in young mice.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号