首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2090篇
  免费   97篇
  国内免费   3篇
  2023年   12篇
  2022年   24篇
  2021年   46篇
  2020年   36篇
  2019年   39篇
  2018年   46篇
  2017年   28篇
  2016年   62篇
  2015年   86篇
  2014年   93篇
  2013年   140篇
  2012年   141篇
  2011年   177篇
  2010年   89篇
  2009年   79篇
  2008年   104篇
  2007年   105篇
  2006年   106篇
  2005年   100篇
  2004年   78篇
  2003年   72篇
  2002年   71篇
  2001年   35篇
  2000年   31篇
  1999年   34篇
  1998年   17篇
  1997年   14篇
  1996年   12篇
  1995年   17篇
  1994年   11篇
  1993年   15篇
  1992年   26篇
  1991年   20篇
  1990年   17篇
  1989年   20篇
  1988年   23篇
  1987年   15篇
  1986年   14篇
  1985年   17篇
  1984年   11篇
  1983年   10篇
  1982年   11篇
  1981年   10篇
  1980年   10篇
  1979年   8篇
  1978年   8篇
  1977年   8篇
  1976年   6篇
  1974年   9篇
  1967年   5篇
排序方式: 共有2190条查询结果,搜索用时 15 毫秒
991.
Myosin II is a central mechanoenzyme in a wide range of cellular morphogenic processes. Its cellular localization is dependent not only on signal transduction pathways, but also on mechanical stress. We suggest that this stress-dependent distribution is the result of both the force-dependent binding to actin filaments and cooperative interactions between bound myosin heads. By assuming that the binding of myosin heads induces and/or stabilizes local conformational changes in the actin filaments that enhances myosin II binding locally, we successfully simulate the cooperative binding of myosin to actin observed experimentally. In addition, we can interpret the cooperative interactions between myosin and actin cross-linking proteins observed in cellular mechanosensation, provided that a similar mechanism operates among different proteins. Finally, we present a model that couples cooperative interactions to the assembly dynamics of myosin bipolar thick filaments and that accounts for the transient behaviors of the myosin II accumulation during mechanosensation. This mechanism is likely to be general for a range of myosin II-dependent cellular mechanosensory processes.  相似文献   
992.
Nonsteroidal anti-inflammatory drugs (NSAIDs) are one of the most widely consumed pharmaceuticals, yet both the mechanisms involved in their therapeutic actions and side-effects, notably gastrointestinal (GI) ulceration/bleeding, have not been clearly defined. In this study, we have used a number of biochemical, structural, computational and biological systems including; Fourier Transform InfraRed (FTIR). Nuclear Magnetic Resonance (NMR) and Surface Plasmon Resonance (SPR) spectroscopy, and cell culture using a specific fluorescent membrane probe, to demonstrate that NSAIDs have a strong affinity to form ionic and hydrophobic associations with zwitterionic phospholipids, and specifically phosphatidylcholine (PC), that are reversible and non-covalent in nature. We propose that the pH-dependent partition of these potent anti-inflammatory drugs into the phospholipid bilayer, and possibly extracellular mono/multilayers present on the luminal interface of the mucus gel layer, may result in profound changes in the hydrophobicity, fluidity, permeability, biomechanical properties and stability of these membranes and barriers. These changes may not only provide an explanation of how NSAIDs induce surface injury to the GI mucosa as a component in the pathogenic mechanism leading to peptic ulceration and bleeding, but potentially an explanation for a number of (COX-independent) biological actions of this family of pharmaceuticals. This insight also has proven useful in the design and development of a novel class of PC-associated NSAIDs that have reduced GI toxicity while maintaining their essential therapeutic efficacy to inhibit pain and inflammation.  相似文献   
993.
Microtubule plus-end-tracking proteins (+TIPs) specifically localize to the growing plus-ends of microtubules to regulate microtubule dynamics and functions. A large group of +TIPs contain a short linear motif, SXIP, which is essential for them to bind to end-binding proteins (EBs) and target microtubule ends. The SXIP sequence site thus acts as a widespread microtubule tip localization signal (MtLS). Here we have analyzed the sequence-function relationship of a canonical MtLS. Using synthetic peptide arrays on membrane supports, we identified the residue preferences at each amino acid position of the SXIP motif and its surrounding sequence with respect to EB binding. We further developed an assay based on fluorescence polarization to assess the mechanism of the EB-SXIP interaction and to correlate EB binding and microtubule tip tracking of MtLS sequences from different +TIPs. Finally, we investigated the role of phosphorylation in regulating the EB-SXIP interaction. Together, our results define the sequence determinants of a canonical MtLS and provide the experimental data for bioinformatics approaches to carry out genome-wide predictions of novel +TIPs in multiple organisms.  相似文献   
994.

Background

Migration from rural areas of India contributes to urbanisation and may increase the risk of obesity and diabetes. We tested the hypotheses that rural-to-urban migrants have a higher prevalence of obesity and diabetes than rural nonmigrants, that migrants would have an intermediate prevalence of obesity and diabetes compared with life-long urban and rural dwellers, and that longer time since migration would be associated with a higher prevalence of obesity and of diabetes.

Methods and Findings

The place of origin of people working in factories in north, central, and south India was identified. Migrants of rural origin, their rural dwelling sibs, and those of urban origin together with their urban dwelling sibs were assessed by interview, examination, and fasting blood samples. Obesity, diabetes, and other cardiovascular risk factors were compared. A total of 6,510 participants (42% women) were recruited. Among urban, migrant, and rural men the age- and factory-adjusted percentages classified as obese (body mass index [BMI] >25 kg/m2) were 41.9% (95% confidence interval [CI] 39.1–44.7), 37.8% (95% CI 35.0–40.6), and 19.0% (95% CI 17.0–21.0), respectively, and as diabetic were 13.5% (95% CI 11.6–15.4), 14.3% (95% CI 12.2–16.4), and 6.2% (95% CI 5.0–7.4), respectively. Findings for women showed similar patterns. Rural men had lower blood pressure, lipids, and fasting blood glucose than urban and migrant men, whereas no differences were seen in women. Among migrant men, but not women, there was weak evidence for a lower prevalence of both diabetes and obesity among more recent (≤10 y) migrants.

Conclusions

Migration into urban areas is associated with increases in obesity, which drive other risk factor changes. Migrants have adopted modes of life that put them at similar risk to the urban population. Gender differences in some risk factors by place of origin are unexpected and require further exploration. Please see later in the article for the Editors'' Summary  相似文献   
995.
996.
Nitric oxide (NO) plays a key role in plant diseases resistance. Here we have first time demonstrated that begomovirus infection in susceptible H. cannabinus plants, results in elevated NO and reactive nitrogen species production during early infection stage not only in infected leaf but also in root and shoot. Production of NO was further confirmed by oxyhemoglobin assay. Furthermore, we used Phenyl alanine ammonia lyase as marker of pathogenesis related enzyme. In addition evidence for protein tyrosine nitration during the early stage of viral infection clearly showed the involvement of nitrosative stress.Key words: nitric oxide, mesta yellow vein mosaic virus, protein nitration  相似文献   
997.
The variation of the berberine content in roots and stem bark of Berberis asiatica with altitude and edaphic conditions in the western Himalaya was estimated by HPLC. The comparative assessment revealed a significantly higher berberine content in roots than in stem barks. Moreover, the berberine content varied significantly with altitude and edaphic conditions both in root and stem bark samples. The populations growing at low altitude contained significantly more berberine than the ones growing at high altitude. Also the moisture and potassium (K) percentage of the soil significantly influenced the berberine content.  相似文献   
998.
999.

Setting

Under India''s Revised National Tuberculosis Control Programme (RNTCP), >15% of previously-treated patients in the reported 2006 patient cohort defaulted from anti-tuberculosis treatment.

Objective

To assess the timing, characteristics, and risk factors for default amongst re-treatment TB patients.

Methodology

For this case-control study, in 90 randomly-selected programme units treatment records were abstracted from all 2006 defaulters from the RNTCP re-treatment regimen (cases), with one consecutively-selected non-defaulter per case. Patients who interrupted anti-tuberculosis treatment for >2 months were classified as defaulters.

Results

1,141 defaulters and 1,189 non-defaulters were included. The median duration of treatment prior to default was 81 days (25%–75% interquartile range 44–117 days) and documented retrieval efforts after treatment interruption were inadequate. Defaulters were more likely to have been male (adjusted odds ratio [aOR] 1.4, 95% confidence interval [CI] 1.2–1.7), have previously defaulted anti-tuberculosis treatment (aOR 1.3 95%CI 1.1–1.6], have previous treatment from non-RNTCP providers (AOR 1.3, 95%CI 1.0–1.6], or have public health facility-based treatment observation (aOR 1.3, 95%CI 1.1–1.6).

Conclusions

Amongst the large number of re-treatment patients in India, default occurs early and often. Improved pre-treatment counseling and community-based treatment provision may reduce default rates. Efforts to retrieve treatment interrupters prior to default require strengthening.  相似文献   
1000.
Human maltase-glucoamylase (MGAM) and sucrase-isomaltase (SI) are small intestinal enzymes that work concurrently to hydrolyze the mixture of linear α-1,4- and branched α-1,6-oligosaccharide substrates that typically make up terminal starch digestion products. MGAM and SI are each composed of duplicated catalytic domains, N- and C-terminal, which display overlapping substrate specificities. The N-terminal catalytic domain of human MGAM (ntMGAM) has a preference for short linear α-1,4-oligosaccharides, whereas N-terminal SI (ntSI) has a broader specificity for both α-1,4- and α-1,6-oligosaccharides. Here we present the crystal structure of the human ntSI, in apo form to 3.2 Å and in complex with the inhibitor kotalanol to 2.15 Å resolution. Structural comparison with the previously solved structure of ntMGAM reveals key active site differences in ntSI, including a narrow hydrophobic +1 subsite, which may account for its additional substrate specificity for α-1,6 substrates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号