全文获取类型
收费全文 | 3511篇 |
免费 | 179篇 |
国内免费 | 7篇 |
专业分类
3697篇 |
出版年
2024年 | 12篇 |
2023年 | 35篇 |
2022年 | 158篇 |
2021年 | 214篇 |
2020年 | 91篇 |
2019年 | 111篇 |
2018年 | 137篇 |
2017年 | 90篇 |
2016年 | 159篇 |
2015年 | 200篇 |
2014年 | 216篇 |
2013年 | 258篇 |
2012年 | 263篇 |
2011年 | 256篇 |
2010年 | 126篇 |
2009年 | 118篇 |
2008年 | 164篇 |
2007年 | 157篇 |
2006年 | 139篇 |
2005年 | 117篇 |
2004年 | 111篇 |
2003年 | 108篇 |
2002年 | 95篇 |
2001年 | 25篇 |
2000年 | 15篇 |
1999年 | 29篇 |
1998年 | 28篇 |
1997年 | 19篇 |
1996年 | 8篇 |
1995年 | 20篇 |
1994年 | 15篇 |
1993年 | 16篇 |
1992年 | 11篇 |
1991年 | 12篇 |
1990年 | 8篇 |
1989年 | 15篇 |
1987年 | 10篇 |
1986年 | 8篇 |
1985年 | 13篇 |
1984年 | 5篇 |
1983年 | 9篇 |
1982年 | 10篇 |
1981年 | 11篇 |
1980年 | 13篇 |
1979年 | 6篇 |
1978年 | 9篇 |
1977年 | 7篇 |
1975年 | 6篇 |
1974年 | 5篇 |
1966年 | 5篇 |
排序方式: 共有3697条查询结果,搜索用时 31 毫秒
31.
Mohammed Hadi Latifi Kunalan Ganthel Shanmugam Rukmanikanthan Azura Mansor Tunku Kamarul Mehmet Bilgen 《Biomedical engineering online》2012,11(1):1-18
Background
Effective fixation of fracture requires careful selection of a suitable implant to provide stability and durability. Implant with a feature of locking plate (LP) has been used widely for treating distal fractures in femur because of its favourable clinical outcome, but its potential in fixing proximal fractures in the subtrochancteric region has yet to be explored. Therefore, this comparative study was undertaken to demonstrate the merits of the LP implant in treating the subtrochancteric fracture by comparing its performance limits against those obtained with the more traditional implants; angle blade plate (ABP) and dynamic condylar screw plate (DCSP).Materials and Methods
Nine standard composite femurs were acquired, divided into three groups and fixed with LP (n?=?3), ABP (n?=?3) and DCSP (n?=?3). The fracture was modeled by a 20?mm gap created at the subtrochanteric region to experimentally study the biomechanical response of each implant under both static and dynamic axial loading paradigms. To confirm the experimental findings and to understand the critical interactions at the boundaries, the synthetic femur/implant systems were numerically analyzed by constructing hierarchical finite element models with nonlinear hyperelastic properties. The predictions from the analyses were then compared against the experimental measurements to demonstrate the validity of each numeric model, and to characterize the internal load distribution in the femur and load bearing properties of each implant.Results
The average measurements indicated that the constructs with ABP, DCPS and LP respectively had overall stiffness values of 70.9, 110.2 and 131.4?N/mm, and exhibited reversible deformations of 12.4, 4.9 and 4.1?mm when the applied dynamic load was 400?N and plastic deformations of 11.3, 2.4 and 1.4?mm when the load was 1000?N. The corresponding peak cyclic loads to failure were 1100, 1167 and 1600?N. The errors between the displacements measured experimentally or predicted by the nonlinear hierarchical hyperelastic model were less than 18?%. In the implanted femur heads, the principal stresses were spatially heterogeneous for ABP and DCSP but more homogenous for LP, meaning LP had lower stress concentrations.Conclusion
When fixed with the LP implant, the synthetic femur model of the subtrochancteric fracture consistently exceeds in the key biomechanical measures of stability and durability. These capabilities suggest increased resistance to fatigue and failure, which are highly desirable features expected of functional implants and hence make the LP implant potentially a viable alternative to the conventional ABP or DCSP in the treatment of subtrochancteric femur fractures for the betterment of clinical outcome. 相似文献32.
Mohammed
H. Hassan Sawsan Abuhamdah Mohamed Abdel-Bary Mohammed Wahman Tarek
Hamdy Abd-Elhamid Morris Beshay Karam Mosallam Bakheet
E.M. Elsadek 《Bioscience reports》2021,41(1)
Survivin is an inhibitor of apoptosis as well as a promoter of cell proliferation. Fibulin-3 is a matrix glycoprotein that displays potential for tumor suppression or propagation. The present study aimed to validate the expression levels of survivin and fibulin-3 in benign and malignant respiratory diseases. This case–control study included 219 patients categorized into five groups. Group A included 63 patients with lung cancer, group B included 63 patients with various benign lung diseases, group D included 45 patients with malignant pleural mesothelioma (MPM), and group E included 48 patients with various benign pleural diseases. Group C included 60 healthy individuals (control group). Serum survivin and fibulin-3 levels were measured by ELISA, whereas their nuclear expressions in the lung and pleura were assessed via Western blot analysis. The results showed significantly higher survivin serum levels and significantly lower fibulin-3 levels in group A compared with in group B and controls (P<0.001). There were significantly higher serum levels of survivin and fibulin-3 in group D compared with in group E and controls (P<0.001), consistent with observed nuclear survivin and fibulin-3 expression levels. Fibulin-3 was determined to have higher value than survivin in discriminating lung cancer from MPM (P<0.05). Survivin and fibulin-3 could be useful diagnostic markers for lung and pleural cancers, and fibulin-3 expression was particularly useful in differentiating lung cancer from MPM. 相似文献
33.
Mechkarska M Ojo OO Meetani MA Coquet L Jouenne T Abdel-Wahab YH Flatt PR King JD Conlon JM 《Peptides》2011,32(2):203-208
Using a combination of reversed-phase HPLC and electrospray mass spectrometry, peptidomic analysis of norepinephrine-stimulated skin secretions of the American bullfrog Lithobates catesbeianus Shaw, 1802 led to the identification and characterization of five newly described peptides (ranatuerin-1CBb, ranatuerin-2CBc, and -CBd, palustrin-2CBa, and temporin-CBf) together with seven peptides previously isolated on the basis of their antimicrobial activity (ranatuerin-1CBa, ranatuerin-2CBa, brevinin-1CBa, and -1CBb, temporin-CBa, -CBb, and -CBd). The abilities of the most abundant of the purified peptides to stimulate the release of insulin from the rat BRIN-BD11 clonal β cell line were evaluated. Ranatuerin-2CBd (GFLDIIKNLGKTFAGHMLDKIRCTIGTCPPSP) was the most potent peptide producing a significant stimulation of insulin release (119% of basal rate, P < 0.01) from BRIN-BD11 cells at a concentration of 30 nM, with a maximum response (236% of basal rate, P < 0.001) at a concentration of 3 μM. Ranatuerin-2CBd did not stimulate release of the cytosolic enzyme, lactate dehydrogenase at concentrations up to 3 μM, indicating that the integrity of the plasma membrane had been preserved. Brevinin-1CBb (FLPFIARLAAKVFPSIICSVTKKC) produced the maximum stimulation of insulin release (285% of basal rate, P < 0.001 at 3 μM) but the peptide was cytotoxic at this concentration. 相似文献
34.
Engineering resistance against tomato yellow leaf curl virus (TYLCV) using antisense RNA 总被引:7,自引:0,他引:7
One of the most severe diseases of cultivated tomato worldwide is caused by tomato yellow leaf curl virus (TYLCV), a geminivirus transmitted by the whitefly Bemisia tabaci. Here we describe the application of antisense RNAs to interfere with the disease caused by TYLCV. The target of the antisense RNA is the rare messenger RNA of the Rep protein, encoded by the C1 gene. Transgenic Nicotiana benthamiana plants expressing C1 antisense RNA were obtained and shown to resist infection by TYLCV. Some of the resistant lines are symptomless, and the replication of challenge TYLCV almost completely suppressed. The transgenes mediating resistance were shown to be effective through at least two generations of progeny. 相似文献
35.
C. Caroline Blackwell Donald M. Weir Anthony Busuttil Abdulrahman T. Saadi Steven D. Essery Mohammed W. Raza V.S. James D.A.C. Mackenzie 《FEMS immunology and medical microbiology》1994,9(2):91-100
Abstract Epidemiological factors associated with susceptibility to respiratory infections are similar to those associated with Sudden Infant Death Syndrome. Here we review the evidence that respiratory pathogens might be involved in some cases of Sudden Infact Death Syndrome in the context of factors identified in epidemiological studies of cot deaths: the age range affected; mother's smoking; respiratory viral infections; immunisation status. Both laboratory and epidimiological evidence suggests that vulnerability of infants to infectious agents depends on interactions between genetic, developmental and environmental factors that contribute to colonisation by microorganisms, the inflammatory and specific immune responses and the infants' physiological responses to inflammatory mediators. A model is proposed to explain how microorganisms might trigger a series of events resulting in some of these unexpected deaths and discusses how the present recommendations regarding child care practices might help reduce the numbers of Sudden Infant Death Syndrome cases associated with infectious agents. 相似文献
36.
Peramaiyan Rajendran Abdullah M Alzahrani Hamza N Hanieh Sekar Ashok Kumar Rebai Ben Ammar Thamaraiselavan Rengarajan Mohammed A Alhoot 《Journal of cellular physiology》2019,234(12):21485-21492
Senescence and autophagy play important roles in homeostasis. Cellular senescence and autophagy commonly cause several degenerative processes, including oxidative stress, DNA damage, telomere shortening, and oncogenic stress; hence, both events are known to be interrelated. Autophagy is well known for its disruptive effect on human diseases, and it is currently proposed to have a direct effect on triggering senescence and quiescence. However, it is yet to be proven whether autophagy has a positive or negative impact on senescence. It is known that elevated levels of autophagy induce cell death, whereas inadequate autophagy can trigger cellular senescence. Both have important roles in human diseases such as aging, renal degeneration, neurodegenerative disorders, and cancer. Therefore, this review aims to highlight the relevance of senescence and autophagy in selected human ailments through a summary of recent findings on the connection and effects of autophagy and senescence in these diseases. 相似文献
37.
I Bruce M Akhlaq GC Bloomfield E Budd B Cox B Cuenoud P Finan P Gedeck J Hatto JF Hayler D Head T Keller L Kirman C Leblanc DL Grand C McCarthy D O'Connor C Owen MS Oza G Pilgrim NE Press L Sviridenko L Whitehead 《Bioorganic & medicinal chemistry letters》2012,22(17):5445-5450
Using a parallel synthesis approach to target a non-conserved region of the PI3K catalytic domain a pan-PI3K inhibitor 1 was elaborated to provide alpha, delta and gamma isoform selective Class I PI3K inhibitors 21, 24, 26 and 27. The compounds had good cellular activity and were selective against protein kinases and other members of the PI3K superfamily including mTOR and DNA-PK. 相似文献
38.
Genomewide linkage scan for split-hand/foot malformation with long-bone deficiency in a large Arab family identifies two novel susceptibility loci on chromosomes 1q42.2-q43 and 6q14.1 下载免费PDF全文
Naveed M Nath SK Gaines M Al-Ali MT Al-Khaja N Hutchings D Golla J Deutsch S Bottani A Antonarakis SE Ratnamala U Radhakrishna U 《American journal of human genetics》2007,80(1):105-111
Split-hand/foot malformation with long-bone deficiency (SHFLD) is a rare, severe limb deformity characterized by tibia aplasia with or without split-hand/split-foot deformity. Identification of genetic susceptibility loci for SHFLD has been unsuccessful because of its rare incidence, variable phenotypic expression and associated anomalies, and uncertain inheritance pattern. SHFLD is usually inherited as an autosomal dominant trait with reduced penetrance, although recessive inheritance has also been postulated. We conducted a genomewide linkage analysis, using a 10K SNP array in a large consanguineous family (UR078) from the United Arab Emirates (UAE) who had disease transmission consistent with an autosomal dominant inheritance pattern. The study identified two novel SHFLD susceptibility loci at 1q42.2-q43 (nonparametric linkage [NPL] 9.8, P=.000065) and 6q14.1 (NPL 7.12, P=.000897). These results were also supported by multipoint parametric linkage analysis. Maximum multipoint LOD scores of 3.20 and 3.78 were detected for genomic locations 1q42.2-43 and 6q14.1, respectively, with the use of an autosomal dominant mode of inheritance with reduced penetrance. Haplotype analysis with informative crossovers enabled mapping of the SHFLD loci to a region of approximately 18.38 cM (8.4 Mb) between single-nucleotide polymorphisms rs1124110 and rs535043 on 1q42.2-q43 and to a region of approximately 1.96 cM (4.1 Mb) between rs623155 and rs1547251 on 6q14.1. The study identified two novel loci for the SHFLD phenotype in this UAE family. 相似文献
39.
By means of 13C and 1H NMR spectroscopy three flavone glycosides, obtained from Stachys recta, were identified as 7-O-(2″-O-6″′-O-acetyl-β-D-allopyranosyl-β-D-glucopyranosides) of 4′-O-methylisoscutellarein, isoscutellarein and 3′-hydroxy-4′-O-methylisoscutellarein. The latter two compounds are isolated for the first time. Only mannose and glucose have been reported previously as sugar components of flavonoids of the genus Stachys. 相似文献
40.
Mohammad Mahfuzul Haque Mohammed Fadlalla Zhi-Qiang Wang Sougata Sinha Ray Koustubh Panda Dennis J. Stuehr 《The Journal of biological chemistry》2009,284(29):19237-19247
Nitric-oxide synthases (NOSs) are calmodulin-dependent flavoheme enzymes that oxidize l-Arg to nitric oxide (NO) and l-citrulline. Their catalytic behaviors are complex and are determined by their rates of heme reduction (kr), ferric heme-NO dissociation (kd), and ferrous heme-NO oxidation (kox). We found that point mutation (E762N) of a conserved residue on the enzyme''s FMN subdomain caused the NO synthesis activity to double compared with wild type nNOS. However, in the absence of l-Arg, NADPH oxidation rates suggested that electron flux through the heme was slower in E762N nNOS, and this correlated with the mutant having a 60% slower kr. During NO synthesis, little heme-NO complex accumulated in the mutant, compared with ∼50–70% of the wild-type nNOS accumulating as this complex. This suggested that the E762N nNOS is hyperactive because it minimizes buildup of an inactive ferrous heme-NO complex during NO synthesis. Indeed, we found that kox was 2 times faster in the E762N mutant than in wild-type nNOS. The mutational effect on kox was independent of calmodulin. Computer simulation and experimental measures both indicated that the slower kr and faster kox of E762N nNOS combine to lower its apparent Km,O2 for NO synthesis by at least 5-fold, which in turn increases its V/Km value and enables it to be hyperactive in steady-state NO synthesis. Our work underscores how sensitive nNOS activity is to changes in the kox and reveals a novel means for the FMN module or protein-protein interactions to alter nNOS activity.Nitric oxide (NO)2 is a biological mediator that is produced in animals by three NO synthase isozymes (NOS, EC 1.14.13.39): inducible NOS (iNOS), neuronal NOS (nNOS), and endothelial NOS (eNOS) (1, 2). The NOS are modular enzymes composed of an N-terminal oxygenase domain and a C-terminal flavoprotein domain, with a calmodulin (CaM)-binding site connecting the two domains (3). During NO synthesis, the flavoprotein domain transfers NADPH-derived electrons through its FAD and FMN cofactors to a heme located in the oxygenase domain. The FMN-to-heme electron transfer enables heme-dependent oxygen activation and a stepwise conversion of l-Arg to NO and citrulline (4, 5). Heme reduction also requires that CaM be bound to NOS and is rate-limiting for NO biosynthesis (6–9).NOS enzymes operate under the constraint of having their newly made NO bind to the ferric heme before it can exit the enzyme (10). How this intrinsic heme-NO binding event impacts NOS catalytic cycling is shown in Fig. 1 and has previously been discussed in detail (10–13). The l-Arg to NO biosynthetic reaction (FeIII to FeIIINO in Fig. 1) is limited by the rate of ferric heme reduction (kr), because all biosynthetic steps downstream are faster than kr. However, once the ferric heme-NO complex forms at the end of each catalytic cycle, it can either dissociate to release NO into the medium (at a rate kd as shown in Fig. 1) or become reduced by the flavoprotein domain (at a rate k′r in Fig. 1; equal to kr) to form the enzyme ferrous heme-NO species (FeIINO), which releases NO very slowly (11, 12). Consequently, two cycles compete during steady-state NO synthesis (Fig. 1); NO dissociation from the ferric heme (kd) is part of a “productive cycle” that releases NO and is essential for NOS bioactivity, whereas reduction of the ferric heme-NO complex (kr′) channels the enzyme into a “futile cycle” that actually represents a NO dioxygenase activity. The rate of futile cycling is also determined by the rate of O2 reaction with the ferrous heme-NO complex (at a rate kox in Fig. 1), which regenerates the ferric enzyme. Surprisingly, NOS enzymes have evolved to have a broad range of kr (varies 40×), kox (varies 15×), and kd (varies 30×) values (Table S1) (12). This causes each NOS to distribute quite differently during steady-state NO synthesis and gives each NOS a unique catalytic profile (12).Open in a separate windowFIGURE 1.Global kinetic model for NOS catalysis. Ferric enzyme reduction (kr) is rate-limiting for the biosynthetic reactions (central linear portion). kcat1 and kcat2 are the conversion rates of the enzyme FeIIO2 species to products in the l-Arg and Nω-hydroxy-l-arginine (NOHA) reactions, respectively. The ferric heme-NO product complex (FeIIINO) can either release NO (kd) or become reduced (k′r) to a ferrous heme-NO complex (FeIINO), which reacts with O2 (kox) to regenerate ferric enzyme. Enzyme partitioning and NO release are determined by the relative rates of kr, kox, and kd. This figure is adapted from Ref. 12.The enzyme physical and electronic factors that may set and regulate each of the three kinetic parameters (kr, kox, and kd) in NOS enzymes remain to be fully described. At present, the composition of the NOS flavoprotein domain and CaM appear to be primarily responsible for determining the kr (14–17), whereas the composition of the NOS oxygenase domain is presumed to determine the kd and kox (18, 19). Indeed, our recent point mutagenesis study identified a patch of electronegative residues on the FMN subdomain that are required to maintain a normal kr and NO synthesis activity in nNOS, suggesting that subdomain electrostatic interactions are important in the process (20). We found particularly large effects when the negative charge at Glu762 was neutralized via mutation to Asn. Remarkably, the NO synthesis activity of E762N nNOS was double that of wild-type nNOS, despite the mutant displaying a slow kr that was half of wild type. In the current report, we show that the E762N mutation has an additional, unsuspected effect on the kox kinetic parameter of nNOS. How this effect alters distribution of the nNOS enzyme during steady-state catalysis, impacts the apparent Km,O2, and leads to hyperactive NO synthesis is described. Our finding that the nNOS flavoprotein domain can tune a key kinetic parameter that defines the rate of a heme-based reaction in the nNOS oxygenase domain is unusual and suggests a means by which protein-protein interactions could regulate the catalytic behavior of nNOS. 相似文献