首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3836篇
  免费   194篇
  国内免费   7篇
  4037篇
  2024年   12篇
  2023年   37篇
  2022年   165篇
  2021年   226篇
  2020年   102篇
  2019年   120篇
  2018年   153篇
  2017年   95篇
  2016年   174篇
  2015年   211篇
  2014年   240篇
  2013年   281篇
  2012年   289篇
  2011年   279篇
  2010年   143篇
  2009年   126篇
  2008年   181篇
  2007年   173篇
  2006年   155篇
  2005年   128篇
  2004年   123篇
  2003年   122篇
  2002年   108篇
  2001年   29篇
  2000年   18篇
  1999年   29篇
  1998年   30篇
  1997年   21篇
  1996年   10篇
  1995年   23篇
  1994年   19篇
  1993年   16篇
  1992年   12篇
  1991年   12篇
  1990年   9篇
  1989年   16篇
  1988年   6篇
  1987年   10篇
  1986年   9篇
  1985年   14篇
  1983年   10篇
  1982年   10篇
  1981年   11篇
  1980年   14篇
  1979年   6篇
  1978年   10篇
  1977年   9篇
  1975年   6篇
  1974年   6篇
  1966年   5篇
排序方式: 共有4037条查询结果,搜索用时 0 毫秒
991.
BackgroundIn past few decades, the research on engineered nanocarriers (NCs) has gained significant attention in cancer therapy due to selective delivery of drug molecules on the diseased cells thereby preventing unwanted uptake into healthy cells to cause toxicity.Scope of reviewThe applicability of enhanced permeability and retention (EPR) effect for the delivery of nanomedicines in cancer therapy has gained limited success due to poor accessibility of the drugs to the target cells where non-specific payload delivery to the off target region lack substantial reward over the conventional therapeutic systems.Major conclusionsIn spite of the fact, nanomedicines fabricated from the biocompatible nanocarriers have reduced targeting potential for meaningful clinical benefits. However, over expression of receptors on the tumor cells provides opportunity to design functional nanomedicine to bind substantially and deliver therapeutics to the cells or tissues of interest by alleviating the bio-toxicity and unwanted effects. This critique will give insight into the over expressed receptor in various tumor and targeting potential of functional nanomedicine as new therapeutic avenues for effective treatment.General significanceThis review shortly shed light on EPR-based drug targeting using nanomedicinal strategies, their limitation, and advances in therapeutic targeting to the tumor cells.  相似文献   
992.
Coral Reefs - Cleaning interactions, which involve a cleaner removing ectoparasites and other material from the body of a heterospecific (client), are iconic symbiotic interactions observed on...  相似文献   
993.

Algal extracts provide a safe regime for enhancing crop productivity under stressful conditions. The present study evaluated the efficiency of aqueous and ethanolic extracts of the brown alga Dictyota dichotoma in alleviation of salt stress on germination of rice seeds. Firstly, seeds were germinated using the aqueous extract of D. dichotoma at concentrations of 0, 5, 10, 20, and 50 g L−1, prepared either at room temperature (RTE) or by boiling (BLE). The % germination of rice increased from 84% in non-treated seeds to 100% when treated with 20 g L−1 BLE, although this treatment caused reduced uniformity of germination. Embryo growth was maximum at 20 g L−1 of both extracts with superiority of BLE over RTE. In the second experiment, the effect of 20 g L−1 aqueous and ethanolic extracts relative to a balanced nutrient supply on germination of seeds treated with 0, 40, 90, and 170 mM NaCl was investigated. Salinity reduced % germination with delayed onset but high uniformity of germination, whereas algal amendments counterbalanced the effect of salinity to a greater extent relative to the nutrient supply. Upon withdrawal of salt stress, seeds promptly recovered, with more efficient recovery of seeds exposed to 170 mM than from 90 mM NaCl. The lower recovery of salt-treated seeds compared with the control seed germination suggests that rice suffered from the toxic ion effect of salinity on embryo rather than from the osmotic effect. Extracts of D. dichotoma can enhance and also alleviate salinity stress on rice seed germination.

  相似文献   
994.
995.
Genome-wide association studies have identified loci that are firmly associated with obesity. The Src-homology-2 B adaptor protein 1 (SH2B1) loci is abundantly expressed in the brain, liver, heart, muscle, and fat tissues. Gestational diabetes mellitus (GDM) is a growing health concern that usually appears during the latter half of pregnancy, and it is characterized by carbohydrate intolerance of variable severity. The SH2B1 gene polymorphism has been linked with an increased risk of weight gain in several but not all population studies. This study aimed to investigate the genetic association of rs4788102 variants in the SH2B1 gene with GDM in Saudi pregnant women. Genomic DNA samples from 200 women with GDM and 300 women without GDM were genotyped using the TaqMan method. The distribution of the GG, GA, and AA genotypes was significantly different between GDM and non-GDM women (p < 0.05). Thus, we identified rs4788102 variants as additional risk factors for GDM in Saudi women, and we suggest that these variants may have a prognostic value.  相似文献   
996.
Obesity in adolescents is associated with metabolic risk factors for type 2 diabetes, particularly insulin resistance and excessive accumulation of intrahepatic triglyceride (IHTG). The purpose of this study was to evaluate the effect of moderate weight loss on IHTG content and insulin sensitivity in obese adolescents who had normal oral glucose tolerance. Insulin sensitivity, assessed by using the hyperinsulinemic–euglycemic clamp technique in conjunction with stable isotopically labeled tracer infusion, and IHTG content, assessed by using magnetic resonance spectroscopy, were evaluated in eight obese adolescents (BMI ≥95th percentile for age and sex; age 15.3 ± 0.6 years) before and after moderate diet‐induced weight loss (8.2 ± 2.0% of initial body weight). Weight loss caused a 61.6 ± 8.5% decrease in IHTG content (P = 0.01), and improved both hepatic (56 ± 18% increase in hepatic insulin sensitivity index, P = 0.01) and skeletal muscle (97 ± 45% increase in insulin‐mediated glucose disposal, P = 0.01) insulin sensitivity. Moderate diet‐induced weight loss decreases IHTG content and improves insulin sensitivity in the liver and skeletal muscle in obese adolescents who have normal glucose tolerance. These results support the benefits of weight loss therapy in obese adolescents who do not have evidence of obesity‐related metabolic complications during a standard medical evaluation.  相似文献   
997.
998.
999.
1000.
Soybean [Glycine max (L.) Merr.] cultivars varied in their resistance to different populations of the soybean cyst nematode (SCN), Heterodera glycines, called HG Types. The rhg1 locus on linkage group G was necessary for resistance to all HG types. However, the loci for resistance to H. glycines HG Type 1.3- (race 14) and HG Type 1.2.5- (race 2) of the soybean cyst nematode have varied in their reported locations. The aims were to compare the inheritance of resistance to three nematode HG Types in a population segregating for resistance to SCN and to identify the underlying quantitative trait loci (QTL). ‘Hartwig’, a soybean cultivar resistant to most SCN HG Types, was crossed with the susceptible cultivar ‘Flyer’. A total of 92 F5-derived recombinant inbred lines (RILs; or inbred lines) and 144 molecular markers were used for map development. The rhg1 associated QTL found in earlier studies were confirmed and shown to underlie resistance to all three HG Types in RILs (Satt309; HG Type 0, P = 0.0001 R 2 = 22%; Satt275; HG Type 1.3, P = 0.001, R 2 = 14%) and near isogeneic lines (NILs; or iso-lines; Satt309; HG Type 1.2.5-, P = 0.001 R 2 = 24%). A new QTL underlying resistance to HG Type 1.2.5- was detected on LG D2 (Satt574; P = 0.001, R 2 = 11%) among 14 RILs resistant to the other HG types. The locus was confirmed in a small NIL population consisting of 60 plants of ten genotypes (P = 0.04). This QTL (cqSCN-005) is located in an interval previously associated with resistance to both SDS leaf scorch from ‘Pyramid’ and ‘Ripley’ (cqSDS-001) and SCN HG Type 1.3- from Hartwig and Pyramid. The QTL detected will allow marker assisted selection for multigenic resistance to complex nematode populations in combination with sudden death syndrome resistance (SDS) and other agronomic traits.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号