首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38篇
  免费   5篇
  43篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   4篇
  2019年   5篇
  2018年   3篇
  2017年   4篇
  2016年   4篇
  2015年   1篇
  2013年   2篇
  2012年   4篇
  2011年   5篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  1969年   2篇
  1967年   1篇
排序方式: 共有43条查询结果,搜索用时 15 毫秒
31.
The embryonic and early developmental stages of Killifish Aphanius hormuzensis reared in a laboratory condition were investigated in detail using light microscopy. The adult male and female of A. hormuzensis were captured from the wild. They were kept in laboratory condition for 2 months and spontaneously spawned at 28 ± 1°C. The fertilized macrolecithal eggs were characterized with spherical shape, transparent and average 1.60 ± 0.20 mm in diameter. The embryonic development was started with fertilized egg activation and the first cleavage was observed in 2.5 hr ± 20 min post fertilization (hpf), followed by blastula formation and gastrulation stages in 7 and 11 hpf respectively. First somite was observed in 20 hpf and the heart beating was detected in 25 hpf. The early ontogeny of A. hormuzensis was followed by complements of organs formation and the newly hatched larva with 4.9 ± 0.10 mm in length was detected in 166 hpf. This study provides a basis for further research on reproductive biology, conservation and breeding of this species.  相似文献   
32.
VEGF and MMP protein production are both required for exercise-induced capillary growth in skeletal muscle. The underlying process by which muscle activity initiates an angiogenic response is not established, but it is known that mechanical forces such as muscle stretch are involved. We hypothesized that stretch of skeletal muscle microvascular endothelial cells induces production of MMP-2 and VEGF through a common signal pathway. Endothelial cells were grown on Bioflex plates and exposed to 10% static stretch for up to 24 h. MMP-2 protein level was measured by gelatin zymography and VEGF, MMP-2, and MT1-MMP mRNA levels were quantified by real-time quantitative PCR. ERK1/2 and JNK phosphorylation and VEGF protein levels were assessed by Western blotting. Effects of mitogen-activated protein kinases (MAPKs) (ERK1/2, JNK) and reactive oxygen species (ROS) on stretch-induced expression of MMP-2 and VEGF were tested using pharmacological inhibitors. Stretching of endothelial cells for 24 h caused significant increases in MMP-2 protein and mRNA level, but no change in MT1-MMP mRNA. While MMP-2 protein production was enhanced by H(2)O(2) in unstretched cells, ROS inhibition during stretch did not diminish MMP-2 mRNA or protein production. Inhibition of JNK suppressed stretch-induced MMP-2 protein and mRNA, but inhibition of ERK had no effect. In contrast, inhibition of ERK but not JNK attenuated the stretch-induced increase in VEGF mRNA. Our results demonstrate that differential regulation of MMP-2 and VEGF by MAPK signal pathways contribute to stretch-induced activation of microvascular endothelial cells.  相似文献   
33.
34.
Much research has been conducted to discover novel techniques to reverse the process of tumorigenesis and, cure already stablished malignancies. One well-stablished approach has been the use of organic compounds and naturally found agents such as melatonin whose anticancer effects have been shown in multiple studies, signaling a unique opportunity regarding cancer prevention and treatment. Various agents use a variety of methods to exert their anticancer effects. Two of the most important of these methods are interfering with cell signaling pathways and changing cellular functions, such as autophagy, which is essential in maintaining cellular stability against multiple exogenous and endogenous sources of stress, and is a major tool to evade early cell death. In this study, the importance of melatonin and autophagy are discussed, and the effects of melatonin on autophagy, and its contribution in the process of tumorigenesis are then noted.  相似文献   
35.

Objectives

To enhance the efficiency of influenza virosome-mediated gene delivery by engineering this virosome.

Results

A novel chimeric influenza virosome was constructed containing the glycoprotein of Vesicular stomatitis virus (VSV-G), along with its own hemagglutinin protein. To optimize the transfection efficiency of both chimeric and influenza cationic virosomes, HEK cells were transfected with plasmid DNA and virosomes and the transfection efficiency was assessed by FACS analysis. The chimeric virosome was significantly more efficient in mediating transfection for all amounts of DNA and virosomes compared to the influenza virosome.

Conclusions

Chimeric influenza virosome, including VSV-G, is superior to the conventional influenza virosome for gene delivery.
  相似文献   
36.
The capacity of mesenchymal stem cells (MSCs) to survive and engraft in the target tissue may lead to promising therapeutic effects. However, the fact that the majority of MSCs die during the first few days following transplantation complicates cell therapy. Hence, it is necessary to strengthen the stem cells to withstand the rigors of the microenvironment to improve the efficacy of cell therapy. In this study, we manipulated MSCs to express a cytoprotective factor, heme oxygenase-1 (HO-1), to address this issue. Full-length cDNA of human HO-1 was isolated and cloned into TOPO vector by TOPO cloning reaction. Then, the construct was ligated to gateway adapted adenovirus expression vector by LR recombination reaction. Afterwards, the recombinant virus expressing HO-1 was produced in appropriate mammalian cell line and used to infect MSCs. The HO-1 engineered MSCs were exposed to hypoxic and oxidative stress conditions followed by evaluation of the cells’ viability and apoptosis. Transient expression of HO-1 was detected within MSCs. It was observed that HO-1 expression could protect MSCs against cell death and the apoptosis triggered by hypoxic and oxidative stress conditions. The MSCs-HO-1 retained their ability to differentiate into adipogenic, chondrogenic, or osteogenic lineages. These findings could be applied as a strategy for prevention of graft cell death in MSCs-based cell therapy and is a good demonstration of how an understanding of cellular stress responses can be used for practical applications.  相似文献   
37.
38.
39.
Hair follicle stem cells (HFSCs) are able to differentiate into neurons and glial cells. Distinct microRNAs (miRNAs) regulate the proliferation and differentiation of HFSCs. However, the exact role of miR-124 in the neural differentiation of HFSCs has not been elucidated. HFSCs were isolated from mouse whisker follicles. miR-9, let-7b, and miR-124, Ptbp1 , and Sox9 expression levels were detected by real-time polymerase chain reaction (RT-PCR). The influence of miR-124 transfection was evaluated using immunostaining. We demonstrated that miR-124 and let-7b expression levels were significantly increased after the neural differentiation. Sox9 and Ptbp1 were identified as the target of miR-124 in the HFSCs. During neural differentiation and miR-124 mimicking, Ptbp1 and Sox9 levels were decreased. Moreover, the miR-124 overexpression increased MAP2 (58.43 ± 11.26) and NeuN (48.34 ± 11.15) proteins expression. The results demonstrated that miR-124 may promote the differentiation of HFSCs into neuronal cells by targeting Sox9 and Ptbp1.  相似文献   
40.
The UBA–UBX domain-containing proteins can interact with ubiquitinated substrates and p97 during endoplasmic reticulum-associated degradation (ERAD). Here, we found that the expressions of all UBA–UBX genes p47, SAKS1, UBXD8, FAF1, and UBXD7 were elevated upon ER stress, albeit with different levels. Of which p47, SAKS1, and UBXD8 are ‘immediate’ respondents whereas FAF1 and UBXD7 were ‘late’ respondents to ER stress. Interestingly, the expression of specific UBA–UBX genes were altered in cells stably expressing three different ERAD substrates such as α-TCR, α1-antitrypsin, and δCD3. We first found that p47 and UBXD8 expression levels were increased in α-TCR and α1-antitrypsin stable cell lines, respectively, whereas SAKS1 expression level was reduced in all the three ERAD substrates tested. Of note, we also found p47 promotes, whereas SASK1 delays the degradation of a single ERAD substrate, α-TCR. Additionally, we found that SAKS1 selectively inhibits the degradation of ERAD substrates without affecting cytosolic proteasomal substrates. Taken together, our results identified that UBA–UBX proteins possess substrate selectivity and opposite role of two different UBA–UBX proteins in the degradation of a single ERAD substrate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号