The process of phagocytosis in multicellular organisms is required for homeostasis, clearance of foreign particles, and establishment of long-term immunity, yet the molecular determinants of uptake are not well characterized. Cdc42, a Rho guanosine triphosphatase, is thought to orchestrate critical actin remodeling events needed for internalization. In this paper, we show that Cdc42 controls exocytic events during phagosome formation. Cdc42 inactivation led to a selective defect in large particle phagocytosis as well as a general decrease in the rate of membrane flow to the cell surface. Supporting the connection between Cdc42 and exocytic function, we found that the overproduction of a regulator of exocytosis, Rab11, rescued the large particle uptake defect in the absence of Cdc42. Additionally, we demonstrated a temporal interaction between Cdc42 and the exocyst complex during large particle uptake. Furthermore, disruption of exocyst function through Exo70 depletion led to a defect in large particle internalization, thereby establishing a functional role for the exocyst complex during phagocytosis. 相似文献
The aim of this study is to investigate the effect of stress modulators on vegetative growth, antioxidants, and nutrient content of Thymus vulgaris L. under water deficit stress conditions. A factorial experiment was performed in the form of a randomized complete block design with 10 treatments and 3 replications in the 2019–2020 growing season. The factors were stress modulators at 5 levels (ZN: zinc nano-fertilizer, AA: amino acid, SW: seaweed, HA: humic acid and C: control) and irrigation regime at 2 levels [FIrr: full irrigation (100% field capacity) and DIrr: deficit irrigation (50% field capacity)]. The highest plant height, number of branches, and total dry weight of the garden thyme plant were observed in the foliar application of HA and SW under full irrigation conditions. Relative water content, chlorophyll a and b, and uptake of nutrients (N, P, and K) were reduced under water deficit stress, but the foliar application of stress modulators increased relative water content, chlorophyll content, and nutrient uptake of the garden thyme plant significantly compared with control. The water deficit increased proline content, total flavonoid, and phenol content in the garden thyme plant. So, the highest total flavonoid and phenol content was obtained from plants treated with HA, whereas proline content was higher in the control plants. Soluble sugars and essential oil increased significantly under water deficit stress conditions. The foliar application of HA compared to the control plant increased soluble sugars and essential oil in garden thymes. The activities of catalase, superoxide dismutase, and ascorbate peroxidase enzymes were improved in stress modulator treatments such as HA and SW compared to control plants under water deficit stress conditions. The plants of garden thymes showed a good response to stress modulator treatments under water stress conditions, and HA and SW treatments were found to be more effective.
For increasing the shelf life and control of devastating fungal pathogen grey mould (Botrytis cinerea), tomato fruits during storage were applied different concentrations of ammi (Carum copticum) and anise (Pimpinella anisum) essential oils. First, antifungal activities of essential oils were tested on artificial growth media. The growth of grey mould was completely inhibited by ammi and anise essential oils at relatively higher concentrations. In second stage, fruits were infected artificially by grey mould spore and then treated with different concentrations of these essential oils. The results of in vivo conditions showed that ammi and anise essential oils applied at all concentrations were increasing the shelf life and inhibited the grey mould growth on tomato fruits completely in comparison to control. Fruits treated with these essential oils had significantly higher total soluble solids (TSS), ascorbic acid, β-carotene and lycopene content compared to control fruits. 相似文献
A new, sensitive and simple high-performance liquid chromatographic method for analysis of topiramate, an antiepileptic agent, using 4-chloro-7-nitrobenzofurazan as pre-column derivatization agent is described. Following liquid-liquid extraction of topiramate and an internal standard (amlodipine) from human serum, derivatization of the drugs was performed by the labeling agent in the presence of dichloromethane, methanol, acetonitrile and borate buffer (0.05 M; pH 10.6). A mixture of sodium phosphate buffer (0.05 M; pH 2.4): methanol (35:65 v/v) was eluted as mobile phase and chromatographic separation was achieved using a Shimpack CLC-C18 (150 x 4.6 mm) column. In this method the limit of quantification of 0.01 microg/mL was obtained and the procedure was validated over the concentration range of 0.01 to 12.8 microg/mL. No interferences were found from commonly co-administrated antiepileptic drugs including phenytoin, phenobarbital carbamazepine, lamotrigine, zonisamide, primidone, gabapentin, vigabatrin, and ethosuximide. The analysis performance was carried-out in terms of specificity, sensitivity, linearity, precision, accuracy and stability and the method was shown to be accurate, with intra-day and inter-day accuracy from -3.4 to 10% and precise, with intra-day and inter-day precision from 1.1 to 18%. 相似文献
Prostate cancer (PCa) is considered the most prevalent malignancy and the second major cause of cancer-related death in males from Western countries. PCa exhibits variable clinical pictures, ranging from dormant to highly metastatic cancer. PCa suffers from poor prognosis and diagnosis markers, and novel biomarkers are required to define disease stages and to design appropriate therapeutic approach by considering the possible genomic and epigenomic differences. MicroRNAs (miRNAs) comprise a class of small noncoding RNAs, which have remarkable functions in cell formation, differentiation, and cancer development and contribute in these processes through controlling the expressions of protein-coding genes by repressing translation or breaking down the messenger RNA in a sequence-specific method. miRNAs in cancer are able to reflect informative data about the current status of disease and this might benefit PCa prognosis and diagnosis since that is concerned to PCa patients and we intend to highlight it in this paper. 相似文献
Over 100 variants have been designed and studied, using multiple docking methods such as Autodock Vina, ArgusLab, Molegro Virtual Docker, and Hex-Cuda, to study the effect of alteration in the structure of carbamate-based acetylcholyne esterase (AChE) inhibitors. Sixteen selected systems were then subjected to 14 ns molecular dynamics (MD) simulations. Results from all the docking methods are in agreement. Variants that involved biphenyl substituents possess the most negative binding energies in the ?37.64 to ?39.31 kJ mol?1 range due to their π–π interactions with AChE aromatic residues. The root mean square deviation values showed that all of these components achieved equilibration after 6 ns. Gyration radius (Rg) and solvent accessibility surface area were calculated to further investigate the AChE conformational changes in the presence of these components. MD simulation results suggested that these components might interact with AChE, possibly with no major changes in AChE secondary and tertiary structures. 相似文献
Bis(maltolato)oxovanadium(IV) (BMOV), and its ethylmaltol analog, bis(ethylmaltolato)oxovanadium(IV) (BEOV), are candidate insulin-enhancing agents for the treatment of type 2 diabetes mellitus; in mid-2008, BEOV advanced to phase II clinical testing. The interactions of BMOV and its inorganic congener, vanadyl sulfate (VOSO4), with human serum apo-transferrin (hTf) were investigated using differential scanning calorimetry (DSC). Addition of BMOV or VOSO4 to apo-hTf resulted in an increase in thermal stability of both the C- and N-lobes of transferrin as a result of binding to either vanadyl compound. A series of DSC thermograms of hTf solutions containing different molar ratios of BMOV and VOSO4 were used to determine binding constants; at 25 °C the binding constants of BMOV to the C- and N-lobes of apo-hTf were found to be 3 (±1) × 105 and 1.8 (±0.7) × 105 M−1, respectively. The corresponding values for VOSO4 were 1.7 (±0.3) × 105 and 7 (±2) × 104 M−1. The results show that the vanadium species initially presented as either BMOV or VOSO4 had similar affinities for human serum transferrin due to oxidation of solvated vanadyl(IV) prior to complexation to transferrin. Binding of metavanadate () was confirmed by DSC and isothermal titration calorimetry (ITC) experiments of the interaction between sodium metavanadate (NaVO3) and hTf. 相似文献