首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7341篇
  免费   426篇
  国内免费   21篇
  7788篇
  2024年   11篇
  2023年   102篇
  2022年   270篇
  2021年   389篇
  2020年   341篇
  2019年   513篇
  2018年   388篇
  2017年   277篇
  2016年   370篇
  2015年   406篇
  2014年   501篇
  2013年   627篇
  2012年   584篇
  2011年   577篇
  2010年   312篇
  2009年   269篇
  2008年   302篇
  2007年   306篇
  2006年   262篇
  2005年   223篇
  2004年   162篇
  2003年   131篇
  2002年   119篇
  2001年   19篇
  2000年   15篇
  1999年   31篇
  1998年   24篇
  1997年   18篇
  1996年   17篇
  1995年   11篇
  1994年   10篇
  1993年   16篇
  1992年   8篇
  1991年   18篇
  1990年   7篇
  1989年   13篇
  1988年   8篇
  1987年   18篇
  1986年   14篇
  1985年   16篇
  1984年   18篇
  1983年   9篇
  1982年   6篇
  1981年   6篇
  1980年   8篇
  1979年   3篇
  1976年   4篇
  1974年   7篇
  1973年   3篇
  1962年   2篇
排序方式: 共有7788条查询结果,搜索用时 15 毫秒
991.
A majority of patients infected with hepatitis C virus (HCV) do not sustain an effective T-cell response, and viremia persists. The mechanism leading to failure of the HCV-specific CD8+ T-cell response in patients developing chronic infection is unclear. We investigated apoptosis susceptibility of HCV-specific CD8+ T cells during the acute and chronic stages of infection. Although HCV-specific CD8+ T cells in the blood during the acute phase of infection and in the liver during the chronic phase were highly activated and expressed an effector phenotype, the majority was undergoing apoptosis. In contrast, peripheral blood HCV-specific CD8+ T cells during the chronic phase expressed a resting memory phenotype. Apoptosis susceptibility of HCV-specific CD8+ T cells was associated with very high levels of programmed death-1 (PD-1) and low CD127 expression and with significant functional T-cell deficits. Further evaluation of the “death phase” of HCV-specific CD8+ T cells during acute HCV infection showed that the majority of cells were dying by a process of cytokine withdrawal, mediated by activated caspase 9. Contraction during the acute phase occurred rapidly via this process despite the persistence of the virus. Remarkably, in the chronic phase of HCV infection, at the site of infection in the liver, a substantial frequency of caspase 9-mediated T-cell death was also present. This study highlights the importance of cytokine deprivation-mediated apoptosis with consequent down-modulation of the immune response to HCV during acute and chronic infections.  相似文献   
992.
Management controversies arise when both of the prey and predator in an ecosystem are species of conservation concern. We investigated trophic interactions between the endangered Persian leopard (Panthera pardus saxicolor) and a declining mountain ungulate, urial wild sheep (Ovis vignei), on a high-altitude steppe of Iran. During two consecutive photo-trapping seasons of 1,300 nights in total, a minimum population of four adult leopards (one female and three males) was documented. Scat analysis indicated that urial wild sheep was the staple of the leopard diet with 48.44 % of total biomass consumed. Remains of domestic livestock in leopard scats were negligible yet alarming (14.53 % biomass consumed), followed by wild pigs (8.13 %) and wild goat (1.26 %). Financial costs of leopard depredation to livestock breeders during our study period were comparatively lower than livestock–leopard conflict hotspots across Iran. Using distance sampling, urial density was 15.8 individuals km?2 (±SE 6.2), and a total biomass of 47,621.5 kg for wild ungulates in the study area was estimated. We estimated that the annual removal rate of urial by leopards during our study period was 9.4 % of the total urial population. We suggest that continuous monitoring of the leopard and prey populations to assess predation impact should be considered, particularly in areas where a single species comprises a remarkable proportion of the leopard diet. In the meantime, assessing probable conflicts with local communities is recommended as a parallel management action to ensure long-term human–leopard coexistence. Our findings will aid wildlife managers in prey-depleted arid environments of western Asia to identify susceptible wild prey populations to predation by large carnivores; hence, significantly contribute in development and implementation of effective conservation measures to mitigate management conflicts.  相似文献   
993.
Staphylokinase (SAK) is a promising thrombolytic agent for the treatment of patients suffering from blood-clotting disorders. To increase the potency of SAK and to minimize vessel reocclusion, a new construct bearing SAK motif fused to tsetse thrombin inhibitor (TTI) via a 20-amino acid linker with 2 RGD (2 × arginine-glycine-aspartic acid inhibiting platelet aggregation via attachment to integrin receptors of platelet) was codon optimized and expressed comparatively in Pichia pastoris GS115 as a Mut+ strain and KM71H as a Muts strain. Fusion protein was optimized in terms of best expression condition and fibrinolytic activity and compared with the rSAK. Expression level of the designed construct reached up to 175 mg/L of the culture medium after 72-hr stimulation with 2.5% methanol and remained steady for 3–4 days. The highest expression was obtained at the range of 2–3% methanol. The SAK-2RGD-TT (relative activity >82%) was more active at 25–37 °C than rSAK (relative activity of 93%). Further, it showed relative activity >80% at pH ranges of 7–9. Western blot analysis showed two bands of nearly 27 and 24 kDa at ratio of 5 to 3, respectively. The specific fibrinolytic activity of the SAK-2RGD-TTI was measured as 8,269 U/mg, and 19,616 U/mg for the nonpurified and purified proteins, respectively. Deglycosylation by using tunicamycin in culture medium resulted in higher fibrinolytic activity of SAK-2RGD-TTI (2.2 fold). Consequently, compared to the rSAK, at the same equimolar proportion, addition of RGD and TTI fragments could increase fibrinolytic activity. Also, P. pastoris can be considered as an efficient host for overexpression of the soluble SAK-2RGD-TTI with high activity without requiring a complicated purification procedure.  相似文献   
994.
Salicylic acid (SA) is a prominent signaling molecule during biotic and abiotic stresses in plants biosynthesized via cinnamate and isochorismate pathways. Cinnamate 4-hydroxylase (C4H) and isochorismate synthase (ICS) are the main enzymes in phenylpropanoid and isochorismate pathways, respectively. To investigate the actual roles of these genes in resistance mechanism to environmental stresses, here, the coding sequences of these enzymes in safflower (Carthamus tinctorius), as an oilseed industrial medicinal plant, were partially isolated and their expression profiles during salinity stress, wounding, and salicylic acid treatment were monitored. As a result, safflower ICS (CtICS) and C4H (CtC4H) were induced in early time points after wounding (3–6 h). Upon salinity stress, CtICS and CtC4H were highly expressed for the periods of 6–24 h and 3–6 h after treatment, respectively. It seems evident that ICS expression level is SA concentration dependent as if safflower treatment with 1 mM SA could induce ICS much stronger than that with 0.1 mM, while C4H is less likely to be so. Based on phylogenetic analysis, safflower ICS has maximum similarity to its ortholog in Vitis vinifera up to 69%, while C4H shows the highest similarity to its ortholog in Echinacea angustifolia up to 96%. Overall, the isolated genes of CtICS and CtC4H in safflower could be considered in plant breeding programs for salinity tolerance as well as for pathogen resistance.  相似文献   
995.
As DNA repair plays an important role in genetic susceptibility to cancer, assessment of the DNA repair phenotype is critical for molecular epidemiological studies of cancer. In this report, we compared use of the luciferase (luc) reporter gene in a host-cell reactivation (HCR) (LUC) assay of repair of ultraviolet (UV) damage to DNA to use of the chloramphenicol (cat) gene-based HCR (CAT) assay we used previously for case-control studies. We performed both the assays on cryopreserved lymphocytes from 102 healthy non-Hispanic white subjects. There was a close correlation between DNA repair capacity (DRC) as measured by the LUC and CAT assays. Although these two assays had similar variation, the LUC assay was faster and more sensitive. We also analyzed the relationship between DRC and the subjects' previously determined genotypes for four polymorphisms of two nucleotide-excision repair (NER) genes (in intron 9 of xeroderma pigmentosum (XP) C and exons 6, 10 and 23 of XPD) and one polymorphism of a base-excision repair gene in exon 10 of X-ray complementing group 1 (XRCC1). The DRC was significantly lower in subjects homozygous for one or more polymorphisms of the two NER genes than in subjects with other genotypes (P=0.010). In contrast, the polymorphic XRCC1 allele had no significant effect on DRC. These results suggest that the post-UV LUC assay measures NER phenotype and that polymorphisms of XPC and XPD genes modulate DRC. For population studies of the DNA repair phenotype, many samples need to be evaluated, and so the LUC assay has several advantages over the CAT assay: the LUC assay was more sensitive, had less variation, was not radioactive, was easier to perform, and required fewer cryopreserved cells. These features make the LUC-based HCR assay suitable for molecular epidemiological studies.  相似文献   
996.

The phytotoxic effects of two allelochemicals (trans-cinnamic acid and syringaldehyde) at different concentrations (1000, 100, 10, and 1 µM) on seed germination, seedling growth, and physiological and biochemical changes of Echinochloa crus-galli L. were tested by comparison to a commercial herbicide ‘Nominee’ (that is, 100 g/L bispyribac-sodium). trans-Cinnamic acid and the herbicide inhibited seed germination completely at 100 µM, whereas for syringaldehyde, complete inhibition required 1000 µM. However, with 100 µM syringaldehyde, the seed germination of the test species was 53% of the control. Allelochemicals and the herbicide delayed seed germination and significantly affected the speed of germination index (S), speed of cumulative germination index (AS), and coefficient of germination rate (CRG). The roots were more affected when nutrients were not added to the growth bioassay. In general, with the increasing concentration of allelochemicals from 100 to 1000 µM, the inhibitory effects increased. Via microscopy analysis, we found leaf blade wilting and necrosis at concentrations above 100 µM in allelochemical-treated plants. Roots of E. crus-galli treated with 1000 µM allelochemicals had black points on root nodes but had no root hairs. The anatomy of roots treated with allelochemicals (1000 µM) showed contraction or reduction of root pith cells as well as fewer and larger vacuoles compared to the control. The allelochemicals also showed remarkable effects on seedling growth, SPAD index, chlorophyll content, and free proline content in a pot culture bioassay, indicating that trans-cinnamic acid and syringaldehyde are potent inhibitors of E. crus-galli growth and can be developed as herbicides for future weed management strategies.

  相似文献   
997.

Objectives

Single nucleotide polymorphisms (SNPs), genetic background, and epigenetics play important roles in rheumatoid arthritis (RA). These factors can be useful in RA diagnosis, prognosis, and treatment response evaluation, particularly with the growing trends in personalized medicine. Therefore, categorizing classic genes and SNPs in RA can present an appropriate guideline for RA management.

Discussion

Prognostic and diagnostic biomarkers play important roles in RA diagnosis and treatment. Categorizing SNPs is not an easy process yet, but selecting classic SNPs can be useful worldwide, according to basic similarities that exist in genomes. In this review, we compiled some of these RA-associated SNPs and biomarkers in a table, according to newly identified factors. The role of epigenetics in RA is undeniable; using epigenetic biomarkers like histone deacetylase (HDACs) can be useful in RA diagnosis and treatment. miRs such as miR-146a, miR-155, and miR-222 are useful in diagnosis and can be used in treatment by interfering with other factors’ functions. Interleukins (ILs) seem to be good prognostic and diagnostic markers and can be targeted in RA treatment.

Conclusion

Using multiple types of biomarkers, such as genes, SNPs, and epigenetic biomarkers like HDACs can be useful in RA management and treatment. PTPN22, HLA-DR polymorphisms, miRs, and HDACs are considerable in RA susceptibility; hence, they can be valuable biomarkers in future studies. This article gathered separate information from approximately 100 articles to present useful biomarkers and polymorphisms in one review.
  相似文献   
998.
Kisspeptin is a 54-amino acid peptide, encoded by the anti-metastasis gene KiSS-1, that activates G protein-coupled receptor 54 (GPR54). The kisspeptin-GPR54 system is critical to normal reproductive development. KiSS-1 gene expression is increased in the human placenta in normal and molar pregnancies. Circulating kisspeptin is dramatically increased in normal pregnancy, but levels in GTN have not previously been reported. The present study was designed to determine whether plasma kisspeptin levels are altered in patients with malignant GTN. Thirty-nine blood samples were taken from 11 patients with malignant GTN at presentation during and after chemotherapy. Blood was also sampled from nonpregnant and pregnant volunteers. Plasma kisspeptin IR and hCG concentrations were measured. Plasma kisspeptin IR concentration in nonpregnant (n = 16) females was <2 pmol/l. Plasma kisspeptin IR in females was 803 +/- 125 pmol/l in the first trimester of pregnancy (n = 13), 2,483 +/- 302 pmol/l in the third trimester of pregnancy (n = 7), and <2 pmol/l on day 15 postpartum (n = 7). Plasma kisspeptin IR and hCG concentrations in patients with malignant GTN were elevated at presentation and fell during and after treatment with chemotherapy in each patient (mean plasma kisspeptin IR: prechemotherapy 1,363 +/- 1,076 pmol/l vs. post-chemotherapy <2 pmol/l, P < 0.0001; mean plasma hCG: prechemotherapy 227,191 +/- 152,354 U/l vs. postchemotherapy 2 U/l, P < 0.0001). Plasma kisspeptin IR strongly positively correlated with plasma hCG levels (r(2) = 0.99, P < 0.0001). Our results suggest that measurement of plasma kisspeptin IR may be a novel tumor marker in patients with malignant GTN.  相似文献   
999.
Solute transport phenomena mediate many aspects of the physiology and contrast agent-based clinical imaging of articular cartilage. Temperatures up to 10°C below standard body temperature (37°C) are common in articulating joints during normal activities and clinically (e.g. cold treatment of injuries). Therefore it is of interest to characterize the effects of temperature changes on solute transport parameters in cartilage. A range of fluorescent solutes including fluorescein isothiocyanate, 4 and 40kDa dextrans, myoglobin, insulin and chondroitin sulfate were prepared and used in assays of solute effective partition coefficient and effective diffusivity in bovine intermediate zone articular cartilage explants maintained at 10, 22 or 37°C. Trends for increasing partition coefficient with increasing temperature were evident for all solutes except chondroitin sulfate, with significant changes between 22 and 37°C for 4kDa dextran, insulin and myoglobin. Diffusivities of most solutes tested also tended to increase with increasing temperature, with significant changes between 10 and 22°C for FITC, 40kDa dextran and myoglobin. Oddly, insulin diffusivity decreased significantly as temperature increased from 22 to 37°C while chondroitin sulfate diffusivity exhibited no clear temperature dependence. These results highlight solute-specific temperature dependences of transport phenomena which may depend upon molecular weight, chemical structure, molecular conformation, and solute-matrix and solute-solute interactions. The articular cartilage explants themselves exhibited small but significant changes in water and glycosaminoglycan contents during experiments, underscoring the importance of solute-matrix interactions. Solute transport parameters in cartilage and their temperature dependences are therefore not easily predicted, and case-by-case experimental determination may be essential.  相似文献   
1000.
In fungi, cell adhesion is required for flocculation, mating and virulence, and it is mediated by covalently bound cell wall proteins termed adhesins. Map4, an adhesin required for mating in Schizosaccharomyces pombe , is N-glycosylated and O-glycosylated, and is an endogenous substrate for the mannosyl transferase Oma4p. Map4 has a modular structure with an N-terminal signal peptide, a serine and threonine (S/T)-rich domain that includes nine repeats of 36 amino acids (rich in serine and threonine residues, but lacking glutamines), and a C-terminal DIPSY domain with no glycosylphosphatidyl inositol (GPI)-anchor signal. Map4 can be extracted from cell walls with SDS/mercaptoethanol sample buffer or with mild alkali solutions. After extensive extraction with hot sample buffer, no more protein can be released by β-glucanases or alkali. Additionally, none of the cysteine residues of the protein is required for its retention at the cell wall. These results show that Map4 is not directly bound to β-glucans and point to the existence of alkali- and SDS/mercaptoethanol-sensitive linkages between cell wall proteins. The N-terminal S/T-rich regions are required for cell wall attachment, but the C-terminal DIPSY domain is required for agglutination and mating in liquid and solid media.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号