首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8342篇
  免费   497篇
  国内免费   20篇
  2024年   14篇
  2023年   98篇
  2022年   268篇
  2021年   421篇
  2020年   390篇
  2019年   585篇
  2018年   462篇
  2017年   319篇
  2016年   428篇
  2015年   452篇
  2014年   578篇
  2013年   732篇
  2012年   694篇
  2011年   677篇
  2010年   368篇
  2009年   305篇
  2008年   334篇
  2007年   353篇
  2006年   298篇
  2005年   243篇
  2004年   186篇
  2003年   151篇
  2002年   129篇
  2001年   24篇
  2000年   19篇
  1999年   26篇
  1998年   23篇
  1997年   25篇
  1996年   17篇
  1995年   10篇
  1994年   9篇
  1993年   13篇
  1992年   9篇
  1991年   17篇
  1989年   12篇
  1988年   6篇
  1987年   15篇
  1986年   19篇
  1985年   14篇
  1984年   17篇
  1983年   11篇
  1982年   6篇
  1981年   7篇
  1980年   9篇
  1979年   6篇
  1976年   5篇
  1975年   7篇
  1974年   8篇
  1971年   5篇
  1970年   5篇
排序方式: 共有8859条查询结果,搜索用时 93 毫秒
991.
992.
Homologous recombination (HR) is the major pathway for repairing double strand breaks (DSBs) in eukaryotes and XRCC2 is an essential component of the HR repair machinery. To evaluate the potential role of mutations in gene repair by HR in individuals susceptible to differentiated thyroid carcinoma (DTC) we used high resolution melting (HRM) analysis, a recently introduced method for detecting mutations, to examine the entire XRCC2 coding region in an Iranian population. HRM analysis was used to screen for mutations in three XRCC2 coding regions in 50 patients and 50 controls. There was no variation in the HRM curves obtained from the analysis of exons 1 and 2 in the case and control groups. In exon 3, an Arg(188)His polymorphism (rs3218536) was detected as a new melting curve group (OR: 1.46; 95%CI: 0.432-4.969; p = 0.38) compared with the normal melting curve. We also found a new Ser(150)Arg polymorphism in exon 3 of the control group. These findings suggest that genetic variations in the XRCC2 coding region have no potential effects on susceptibility to DTC. However, further studies with larger populations are required to confirm this conclusion.  相似文献   
993.
Diminished Na,K-ATPase expression has been reported in several carcinomas and has been linked to tumor progression. However, few studies have determined whether Na,K-ATPase function and expression are altered in lung malignancies. Because cigarette smoke (CS) is a major factor underlying lung carcinogenesis and progression, we investigated whether CS affects Na,K-ATPase activity and expression in lung cell lines. Cells exposed to CS in vitro showed a reduction of Na,K-ATPase activity. We detected the presence of reactive oxygen species (ROS) in cells exposed to CS before Na,K-ATPase inhibition, and neutralization of ROS restored Na,K-ATPase activity. We further determined whether Na,K-ATPase expression correlated with increasing grades of lung adenocarcinoma and survival of patients with smoking history. Immunohistochemical analysis of lung adenocarcinoma tissues revealed reduced Na,K-ATPase expression with increasing tumor grade. Using tissue microarray containing lung adenocarcinomas of patients with known smoking status, we found that high expression of Na,K-ATPase correlated with better survival. For the first time, these data demonstrate that CS is associated with loss of Na,K-ATPase function and expression in lung carcinogenesis, which might contribute to disease progression.  相似文献   
994.
Trafficking and recruitment of eosinophils during allergic airway inflammation is mediated by the phosphatidylinositol 3-kinase (PI3K) family of signaling molecules. The role played by the p110δ subunit of PI3K (PI3K p110δ) in regulating eosinophil trafficking and recruitment was investigated using a selective pharmacological inhibitor (IC87114). Treatment with the PI3K p110δ inhibitor significantly reduced murine bone marrow-derived eosinophil (BM-Eos) adhesion to VCAM-1 as well as ICAM-1 and inhibited activation-induced changes in cell morphology associated with reduced Mac-1 expression and aberrant cell surface localization/distribution of Mac-1 and α4. Infused BM-Eos demonstrated significantly decreased rolling and adhesion in inflamed cremaster muscle microvessels of mice treated with IC87114 compared with vehicle-treated mice. Furthermore, inhibition of PI3K p110δ significantly attenuated eotaxin-1-induced BM-Eos migration and prevented eotaxin-1-induced changes in the cytoskeleton and cell morphology. Knockdown of PI3K p110δ with siRNA in BM-Eos resulted in reduced rolling, adhesion, and migration, as well as inhibition of activation-induced changes in cell morphology, validating its role in regulating trafficking and migration. Finally, in a mouse model of cockroach antigen-induced allergic airway inflammation, oral administration of the PI3K p110δ inhibitor significantly inhibited airway eosinophil recruitment, resulting in attenuation of airway hyperresponsiveness in response to methacholine, reduced mucus secretion, and expression of proinflammatory molecules (found in inflammatory zone-1 and intelectin-1). Overall, these findings indicate the important role played by PI3K p110δ in mediating BM-Eos trafficking and migration by regulating adhesion molecule expression and localization/distribution as well as promoting changes in cell morphology that favor recruitment during inflammation.  相似文献   
995.
Arsenical compounds exhibit a differential toxicity to cancer cells. Microtubules are a primary target of a number of anticancer drugs, such as arsenical compounds. The interaction of 1-NAA (1-naphthylarsonic acid) has been investigated on microtubule polymerization under in vitro and cellular conditions. Microtubules were extracted from sheep brain. Transmission electron microscopy was used to show microtubule structure in the presence of 1-NAA. Computational docking method was applied for the discovery of ligand-binding sites on the microtubular proteins. Proliferation of HeLa cells and HF2 (human foreskin fibroblasts) was measured by the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide] assay method following their incubation with 1-NAA. Fluorescence microscopic labelling was done with the help of α-tubulin monoclonal antibody and Tunel kit was used to investigate the apoptotic effects of 1-NAA on the HeLa cells. 1-NAA inhibits the tubulin polymerization by the formation of abnormal polymers having high affinity to the inner cell wall.  相似文献   
996.
Background and Aims: Helicobacter pylori is a highly diverse pathogen, which encounters epithelial cells as the initial defense barrier during its lifelong infection. The structure of epithelial cells can be disrupted through cleavage of microfilaments. Cytokeratin 18 (CK18) is an intermediate filament, the cleavage of which is considered an early event during apoptosis following activation of effector caspases. Methods: Helicobacter pylori strains were isolated from 76 dyspeptic patients. cagA 3’ variable region and CagA protein status were analyzed by PCR and western blotting, respectively. Eight hours post‐co‐culture of AGS cells with different H. pylori strains, flow cytometric analysis was performed using M30 monoclonal antibody specific to CK18 cleavage‐induced neo‐epitope. Results: Higher rates of CK18 cleavage were detected during co‐culture of AGS cells with H. pylori strains bearing greater numbers of cagA EPIYA‐C and multimerization (CM) motifs. On the other hand, H. pylori strains with greater numbers of EPIYA‐B relative to EPIYA‐C demonstrated a decrease in CK18 cleavage rate. Thus, H. pylori‐mediated cleavage of CK18 appeared proportional to the number of CagA EPIYA‐C and CM motifs, which seemed to be downplayed in the presence of EPIYA‐B motifs. Conclusions: Our observation associating the heterogeneity of cagA variants with the potential of H. pylori strains in the induction of CK18 cleavage as an early indication of apoptosis in gastric epithelial cells supports the fact that apoptosis may be a type‐specific trait. However, additional cagA‐targeted experiments are required to clearly identify the role of EPIYA and CM motifs in apoptosis and/or the responsible effector molecules.  相似文献   
997.
The origin of the fungal wheat pathogen Phaeosphaeria nodorum remains unclear despite earlier intensive global population genetic and phylogeographical studies. We sequenced 1683 bp distributed across three loci in 355 globally distributed Phaeosphaeria isolates, including 74 collected in Iran near the center of origin of wheat. We identified nine phylogenetically distinct clades, including two previously unknown species tentatively named P1 and P2 collected in Iran. Coalescent analysis indicates that P1 and P2 are sister species of P. nodorum and the other Phaeosphaeria species identified in our analysis. Two species, P. nodorum and P. avenaria f. sp. tritici 1 (Pat1), comprised ~85% of the sampled isolates, making them the dominant wheat-infecting pathogens within the species complex. We designed a PCR-RFLP assay to distinguish P. nodorum from Pat1. Approximately 4% of P. nodorum and Pat1 isolates showed evidence of hybridization. Measures of private allelic richness at SSR and sequence loci suggest that the center of origin of P. nodorum coincides with its host in the Fertile Crescent. We hypothesize that the origin of this species complex is also in the Fertile Crescent, with four species out of nine found exclusively in the Iranian collections.  相似文献   
998.
Nitric oxide (NO), a small diffusible, ubiquitous bioactive molecule, acts as prooxidant as well as antioxidant, and also regulates remarkable spectrum of plant cellular mechanisms. The present work was undertaken to investigate the role of nitric oxide donor sodium nitroprusside (SNP) and/or calcium chloride (CaCl(2)) in the tolerance of excised mustard leaves to salt stress. After 24h, salt stressed leaves treated with SNP and/or CaCl(2), showed an improvement in the activities of carbonic anhydrase (CA) and nitrate reductase (NR), and leaf chlorophyll (Chl) content, leaf relative water content (LRWC) and leaf ion concentration as compared with the leaves treated with NaCl only. Salinity stress caused a significant increase in H(2)O(2) content and membrane damage which is witnessed by enhanced levels of thiobarbituric acid reactive substances (TBARS) and electrolyte leakage. By contrast, such increases were blocked by the application of 0.2mM SNP and 10mM CaCl(2) to salt stressed leaves. Application of SNP and/or CaCl(2) alleviated NaCl stress by enhancing the activities of antioxidative enzymes viz. superoxide dismutase (SOD), catalase (CAT), peroxidase (POX), ascorbate peroxidase (APX) and glutathione reductase (GR) and by enhancing proline (Pro) and glycinebetaine (GB) accumulation with a concomitant decrease in H(2)O(2) content, TBARS and electrolyte leakage, which is manifested in the tolerance of plants to salinity stress. Moreover, application of SNP with CaCl(2) was more effective to reduce the detrimental effects of NaCl stress on excised mustard leaves. In addition to this, ameliorating effect of SNP was not effective in presence of NO scavenger cPTIO [2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide]. To put all these in a nut shell, the results advocate that SNP in association with CaCl(2) plays a role in enhancing the tolerance of plants to salt stress by improving antioxidative defence system, osmolyte accumulation and ionic homeostasis.  相似文献   
999.
We designed a multiplex real time PCR for rapid, sensitive and specific detection of Streptococcus pneumoniae, Legionella pneumophila, Chlamydophila pneumoniae and Mycoplasma pneumoniae. The study cases consisted of 129 patients with community acquired pneumonia (CAP). Bacteriological techniques were implemented for detection of the cultivable organisms. DNA were extracted from sputa, throat swabs, bronchoalveolar lavages and tracheal aspirates and used as templates in real time PCR. The primers and probes were designed for cbpA (S. pneumoniae), p1adhesin (M. pneumoniae), mip (L. pneumophila) and ompA (C. pneumoniae). After optimization of real time PCR for every organism, the experiments were continued in multiplex in a single tube. Of 129 CAP specimens, the positive cultures included 14 (10.85%) for S. pneumoniae, 9 (6.98%) for L. pneumophila and 3 (2.33%) for M. pneumoniae. Four specimens (3.10%) were positive for C. pneumoniae by real time PCR. The sensitivity of our real time PCR was 100% for all selected bacteria. The specificity of the test was 98.26%, 98.34%, 100% and 100% for S. pneumoniae, L. pneumophila, M. pneumoniae and C. pneumoniae, respectively. This is the first report on the use of multiplex real time PCR for detection of CAP patients in the Middle East. The method covers more than 90% of the bacterial pathogens causing CAP.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号