首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7896篇
  免费   452篇
  国内免费   23篇
  8371篇
  2024年   11篇
  2023年   105篇
  2022年   277篇
  2021年   403篇
  2020年   376篇
  2019年   554篇
  2018年   452篇
  2017年   300篇
  2016年   397篇
  2015年   428篇
  2014年   539篇
  2013年   690篇
  2012年   640篇
  2011年   646篇
  2010年   344篇
  2009年   299篇
  2008年   312篇
  2007年   327篇
  2006年   272篇
  2005年   218篇
  2004年   177篇
  2003年   127篇
  2002年   116篇
  2001年   21篇
  2000年   19篇
  1999年   27篇
  1998年   24篇
  1997年   19篇
  1996年   19篇
  1995年   8篇
  1994年   10篇
  1993年   15篇
  1992年   9篇
  1991年   18篇
  1990年   8篇
  1989年   14篇
  1988年   6篇
  1987年   14篇
  1986年   14篇
  1985年   16篇
  1984年   15篇
  1983年   13篇
  1982年   9篇
  1981年   6篇
  1980年   8篇
  1979年   4篇
  1978年   5篇
  1975年   4篇
  1974年   10篇
  1972年   4篇
排序方式: 共有8371条查询结果,搜索用时 0 毫秒
101.
Non-melanoma skin cancer (NMSC) is the most common type of skin cancer in Caucasian populations. Its increasing incidence has been a major public health concern. Elevated expressions of ODC and COX-2 are associated with both murine and human NMSCs. Inhibition of these molecular targets singly employing their respective small molecule inhibitors showed limited success. Here, we show that combined blockade of ODC and COX-2 using their potent inhibitors, DFMO and diclofenac respectively abrogates growth of A431 epidermal xenograft tumors in nu/nu mice by more than 90%. The tumor growth inhibition was associated with a diminution in the proliferation and enhancement in apoptosis. The proliferation markers such as PCNA and cyclin D1 were reduced. TUNEL-positive apoptotic cells and cleaved caspase-3 were increased in the residual tumors. These agents also manifested direct target-unrelated effects. Reduced expression of phosphorylated MAPKAP-2, ERK, and Akt (ser473 & thr308) were noticed. The mechanism by which combined inhibition of ODC/COX attenuated tumor growth and invasion involved reduction in EMT. Akt activation by ODC+COX-2 over-expression was the key player in this regard as Akt inhibition manifested effects similar to those observed by the combined inhibition of ODC+COX-2 whereas forced over-expression of Akt resisted against DFMO+diclofenac treatment. These data suggest that ODC+COX-2 over-expression together leads to pathogenesis of aggressive and invasive cutaneous carcinomas by activating Akt signaling pathway, which through augmenting EMT contributes to tumor invasion.  相似文献   
102.

Two new tentaculariid species were found infecting carcharhiniform sharks from off the coasts of Malaysian Borneo and the southwestern coast of the Baja California Sur, Mexico. Both new species exhibit a homeoacanthous heteromorphous basal and a homeoacanthous homeomorphous metabasal armature. Since this hook arrangement is unique within the tentaculariids and the taxonomy in this group deeply depends on the tentacular armature, Reimeriella n. g. is erected to accommodate R. varioacantha n. sp. ex Carcharhinus sorrah (Müller & Henle) and R. mexicoensis n. sp. ex Sphyrna lewini (Griffith & Smith). Unlike R. mexicoensis n. sp., R. varioacantha n. sp. has a pars bothrialis not overlapping the pars bulbosa and the number of testes is higher. Reimeriella mexicoensis n. sp. possesses very large uncinate to falcate hooks in the basal armature, while in R. varioacantha n. sp. these hooks are almost the same in size as the remaining hooks in both the basal and metabasal armature. The latter species is the first tentaculariid species where the metabasal armature very closely resembles an eutetrarhynchid with a heteroacanthous typical homeomorphous metabasal armature and a high number of spiniform hooks per half spiral row (10–11 vs 6–7 in R. mexicoensis n. sp.) in the metabasal and apical armature. This pattern provides further morphological evidence for the close relationship of the Eutetrarhynchoidea and the Tentacularioidea. Reimeriella varioacantha n. sp. enriches the trypanorhynch fauna from off the coast of Malaysian Borneo while R. mexicoensis n. sp. is a novel record of a tentaculariid trypanorhynch from the Mexican Pacific.

  相似文献   
103.
Biological Trace Element Research - In low-income and middle-income countries such as Iran, smoking is becoming increasingly popular, especially among young people. This has led to additional...  相似文献   
104.
Escherichia coli is frequently exploited for genetic manipulations and heterologous gene expression studies. We have evaluated the metabolic profile of E. coli strain BL21 (DE3) RIL CodonPlus after genetic modifications and subjecting to the production of recombinant protein. Three genetically variable E. coli cell types were studied, normal cells (susceptible to antibiotics) cultured in simple LB medium, cells harboring ampicillin-resistant plasmid pET21a (+), grown under antibiotic stress, and cells having recombinant plasmid pET21a (+) ligated with bacterial lactate dehydrogenase gene grown under ampicillin and standard isopropyl thiogalactoside (IPTG)-induced gene expression conditions. A total of 592 metabolites were identified through liquid chromatography-mass spectrometry/mass spectrometry analysis, feature and peak detection using XCMS and CAMERA followed by precursor identification by METLIN-based procedures. Overall, 107 metabolites were found differentially regulated among genetically modified cells. Quantitative analysis has shown a significant modulation in DHNA-CoA, p-aminobenzoic acid, and citrulline levels, indicating an alteration in vitamin K, folic acid biosynthesis, and urea cycle of E. coli cells during heterologous gene expression. Modulations in energy metabolites including NADH, AMP, ADP, ATP, carbohydrate, terpenoids, fatty acid metabolites, diadenosine tetraphosphate (Ap4A), and l -carnitine advocate major metabolic rearrangements. Our study provides a broader insight into the metabolic adaptations of bacterial cells during gene manipulation experiments that can be prolonged to improve the yield of heterologous gene products and concomitant production of valuable biomolecules.  相似文献   
105.
Human-induced pluripotent stem cells-derived hepatocyte-like cells (hiPSCs-HLCs) holds considerable promise for future clinical personalized therapy of liver disease. However, the low engraftment of these cells in the damaged liver microenvironment is still an obstacle for potential application. In this study, we explored the effectiveness of decellularized amniotic membrane (dAM) matrices for culturing of iPSCs and promoting their differentiation into HLCs. The DNA content assay and histological evaluation indicated that cellular and nuclear residues were efficiently eliminated and the AM extracellular matrix component was maintained during decelluarization. DAM matrices were developed as three-dimensional scaffolds and hiPSCs were seeded into these scaffolds in defined induction media. In dAM scaffolds, hiPSCs-HLCs gradually took a typical shape of hepatocytes (polygonal morphology). HiPSCs-HLCs that were cultured into dAM scaffolds showed a higher level of hepatic markers than those cultured in tissue culture plates (TCPs). Moreover, functional activities in term of albumin and urea synthesis and CYP3A activity were significantly higher in dAM scaffolds than TCPs over the same differentiation period. Thus, based on our results, dAM scaffold might have a considerable potential in liver tissue engineering, because it can improve hepatic differentiation of hiPSCs which exhibited higher level of the hepatic marker and more stable metabolic functions.  相似文献   
106.
107.
Abstract

The aptamers with the ability to form a G-quadruplex structure can be stable in the presence of some ions. Hence, study of the interactions between such aptamers and ions can be beneficial to determine the highest selective aptamer toward an ion. In this article, molecular dynamics (MD) simulations and quantum mechanics (QM) calculations have been applied to investigate the selectivity of the T30695 aptamer toward Pb2+ in comparison with some ions. The Free Energy Landscape (FEL) analysis indicates that Pb2+ has remained inside the aptamer during the MD simulation, while the other ions have left it. The Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) binding energies prove that the conformational stability of the aptamer is the highest in the presence of Pb2+. According to the compaction parameters, the greatest compressed ion-aptamer complex, and hence, the highest ion-aptamer interaction have been induced in the presence of Pb2+. The contact maps clarify the closer contacts between the nucleotides of the aptamer in the presence of Pb2+. The density functional theory (DFT) results show that Pb2+ forms the most stable complex with the aptamer, which is consistent with the MD results. The QM calculations reveal that the N-H bonds and the O…H distances are the longest and the shortest, respectively, in the presence of Pb2+. The obtained results verify that the strongest hydrogen bonds (HBs), and hence, the most compressed aptamer structure are induced by Pb2+. Besides, atoms in molecules (AIM) and natural bond orbital (NBO) analyses confirm the results.

Communicated by Ramaswamy H. Sarma  相似文献   
108.
109.
Molecular Biology Reports - Mercuric chloride (MC) is a complex substance which is capable to produce free radicals. Middle Eastern Phoenix dactylifera (MEPD) is a flowering plant of palm family...  相似文献   
110.
Abstract

This study identifies and validates hexokinase type 4 (HK4), an isozyme of hexokinase in the liver and pancreas, as an important target of C2-β-D-glucopyranosyl-1,3,6,7-tetrahydroxyxanthone (βdGT), a xanthone glucoside suggested to have antidiabetic property. In the study, we applied the computational pipeline of molecular docking followed by the molecular dynamics simulations to shortlist potential βdGT protein targets. The analysis of protein dynamics and the binding free energy (ΔG) led us to the identification of HK4 as a key βdGT target, whereby the binding mode and domain dynamics suggested the activator function of βdGT. βdGT bound to the allosteric site of the isozyme ~13?Å away from the substrate (glucose)-binding site. The binding free energy of the ligand-protein complex was energetically feasible (ΔG, –41.61?kcal/mol) and the cleft angle deviation between the two (small and large) domains of HK4 revealed differential HK4 dynamics in response to βdGT binding. 3D structure analysis of the isozyme-ligand complex highlighted the role of Arg63, Glu67 and Lys458 in ligand stabilization and hydrophobic interactions mediated by Tyr214 and Met235. Experimental validation of the results of computational analysis confirmed the activator function of βdGT on HK4. The study has implication in diabetes as βdGT may be used to lower the blood glucose level by activating hepatic and pancreatic hexokinase without the risk of hypoglycemia.

Communicated by Ramaswamy H. Sarma  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号