首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7967篇
  免费   472篇
  国内免费   25篇
  8464篇
  2024年   16篇
  2023年   106篇
  2022年   274篇
  2021年   407篇
  2020年   368篇
  2019年   531篇
  2018年   417篇
  2017年   293篇
  2016年   397篇
  2015年   426篇
  2014年   514篇
  2013年   668篇
  2012年   649篇
  2011年   637篇
  2010年   341篇
  2009年   280篇
  2008年   322篇
  2007年   335篇
  2006年   309篇
  2005年   241篇
  2004年   185篇
  2003年   136篇
  2002年   126篇
  2001年   29篇
  2000年   29篇
  1999年   37篇
  1998年   24篇
  1997年   19篇
  1996年   21篇
  1995年   7篇
  1994年   12篇
  1993年   16篇
  1992年   18篇
  1991年   20篇
  1990年   10篇
  1989年   18篇
  1988年   17篇
  1987年   20篇
  1986年   16篇
  1985年   19篇
  1984年   23篇
  1983年   18篇
  1982年   13篇
  1981年   8篇
  1980年   9篇
  1979年   6篇
  1974年   11篇
  1973年   11篇
  1972年   6篇
  1969年   9篇
排序方式: 共有8464条查询结果,搜索用时 15 毫秒
51.
Mycopathologia - Fungi of the genus Fusarium are well known as major plant pathogens but also cause a broad spectrum of human infections. Sixty-three clinical isolates, collected during...  相似文献   
52.
53.
54.
Coral Reefs - The Arabian Gulf is a natural laboratory to examine how subtropical coral reef ecosystems might change in responding to recurring heating events because of uniquely high water...  相似文献   
55.
Li metal is a promising anode material for all‐solid‐state batteries, owing to its high specific capacity and low electrochemical potential. However, direct contact of Li metal with most solid‐state electrolytes induces severe side reactions that can lead to dendrite formation and short circuits. Moreover, Li metal is unstable when exposed to air, leading to stringent processing requirements. Herein, it is reported that the Li3PS4/Li interface in all‐solid‐state batteries can be stabilized by an air‐stable LixSiSy protection layer that is formed in situ on the surface of Li metal through a solution‐based method. Highly stable Li cycling for over 2000 h in symmetrical cells and a lifetime of over 100 cycles can be achieved for an all‐solid‐state LiCoO2/Li3PS4/Li cell. Synchrotron‐based high energy X‐ray photoelectron spectroscopy in‐depth analysis demonstrates the distribution of different components within the protection layer. The in situ formation of an electronically insulating LixSiSy protection layer with highly ionic conductivity provides an effective way to prevent Li dendrite formation in high‐energy all‐solid‐state Li metal batteries.  相似文献   
56.
57.
58.
Caesalpinia digyna (Rottl.) (Family: Fabaceae) is an essential medicinal plant for it's conventional uses against a kind of human disorders. This research aims to investigate the antidiarrheal, antibacterial and antifungal properties of the methanol extract of the stems extracts of the C. digyna (MECD). The in vivo antidiarrheal activity of the stem extracts were evaluated by using castor oil-induced diarrhea, castor oil-induced enteropooling and charcoal induced intestinal transit in mice model. Besides, in vitro antimicrobial potentiality of MECD was investigated by the disc diffusion method. In silico activity of the isolated compounds were performed by Schrödinger-Maestro (Version 11.1) software. In addition, The ADME/T analysis and PASS prediction were implemented by using pass online tools. In the antidiarrheal investigation, the MECD exhibited a notable inhibition rate in all test approaches which were statistically significant (p < 0.05, p < 0.1, p < 0.01). MECD 400 mg/kg showed the maximum antidiarrheal potency in all the test methods. In vitro antimicrobial analysis unveiled that, MECD revealed higher potentiality against almost all pathogens and indicates dose-dependent activity against almost all the bacteria and fungi. In the case of in silico evaluation of anti-diarrheal, anti-bacterial and anti-fungal activity, all three isolated compounds met the pre-conditions of Lipinski's five rules for drug discovery. Pass predicted study also employed for all compounds. However, The chemical constituents of the C. digyna can be a potent source of anti-diarrheal, anti-bacterial and anti-fungal medicine and further modification and simulation studies are required to establish the effectiveness of bioactive compounds.  相似文献   
59.
Although mammals are thought to lose their capacity to regenerate heart muscle shortly after birth, embryonic and neonatal cardiomyocytes in mammals are hyperplastic. During proliferation these cells need to selectively disassemble their myofibrils for successful cytokinesis. The mechanism of sarcomere disassembly is, however, not understood. To study this, we performed a series of immunofluorescence studies of multiple sarcomeric proteins in proliferating neonatal rat ventricular myocytes and correlated these observations with biochemical changes at different cell cycle stages. During myocyte mitosis, α-actinin and titin were disassembled as early as prometaphase. α-actinin (representing the sarcomeric Z-disk) disassembly precedes that of titin (M-line), suggesting that titin disassembly occurs secondary to the collapse of the Z-disk. Sarcomere disassembly was concurrent with the dissolution of the nuclear envelope. Inhibitors of several intracellular proteases could not block the disassembly of α-actinin or titin. There was a dramatic increase in both cytosolic (soluble) and sarcomeric α-actinin during mitosis, and cytosolic α-actinin exhibited decreased phosphorylation compared to sarcomeric α-actinin. Inhibition of cyclin-dependent kinase 1 (CDK1) induced the quick reassembly of the sarcomere. Sarcomere dis- and re-assembly in cardiomyocyte mitosis is CDK1-dependent and features dynamic differential post-translational modifications of sarcomeric and cytosolic α-actinin.  相似文献   
60.
The thymus is the most rapidly aging tissue in the body, with progressive atrophy beginning as early as birth and not later than adolescence. Latent regenerative potential exists in the atrophic thymus, because certain stimuli can induce quantitative regrowth, but qualitative function of T lymphocytes produced by the regenerated organ has not been fully assessed. Using a genome-wide computational approach, we show that accelerated thymic aging is primarily a function of stromal cells, and that while overall cellularity of the thymus can be restored, many other aspects of thymic function cannot. Medullary islet complexity and tissue-restricted antigen expression decrease with age, representing potential mechanisms for age-related increases in autoimmune disease, but neither of these is restored by induced regrowth, suggesting that new T cells produced by the regrown thymus will probably include more autoreactive cells. Global analysis of stromal gene expression profiles implicates widespread changes in Wnt signaling as the most significant hallmark of degeneration, changes that once again persist even at peak regrowth. Consistent with the permanent nature of age-related molecular changes in stromal cells, induced thymic regrowth is not durable, with the regrown organ returning to an atrophic state within 2 weeks of reaching peak size. Our findings indicate that while quantitative regrowth of the thymus is achievable, the changes associated with aging persist, including potential negative implications for autoimmunity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号