首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5984篇
  免费   302篇
  国内免费   8篇
  6294篇
  2024年   19篇
  2023年   93篇
  2022年   219篇
  2021年   312篇
  2020年   148篇
  2019年   168篇
  2018年   181篇
  2017年   153篇
  2016年   270篇
  2015年   298篇
  2014年   313篇
  2013年   470篇
  2012年   427篇
  2011年   462篇
  2010年   263篇
  2009年   237篇
  2008年   322篇
  2007年   289篇
  2006年   263篇
  2005年   217篇
  2004年   205篇
  2003年   171篇
  2002年   172篇
  2001年   51篇
  2000年   47篇
  1999年   42篇
  1998年   30篇
  1997年   32篇
  1996年   18篇
  1995年   27篇
  1994年   30篇
  1993年   22篇
  1992年   18篇
  1991年   18篇
  1990年   16篇
  1989年   19篇
  1988年   17篇
  1987年   19篇
  1986年   9篇
  1985年   24篇
  1984年   23篇
  1983年   15篇
  1982年   25篇
  1981年   13篇
  1980年   16篇
  1979年   9篇
  1978年   14篇
  1977年   10篇
  1974年   6篇
  1966年   7篇
排序方式: 共有6294条查询结果,搜索用时 0 毫秒
71.
Summary Bacteria utilizing high concentrations of acetonitrile as the sole carbon source were isolated and identified asChromobacterium sp. andPseudomonas aeruginosa. Maximum growth was attained after 96 h of incubation andP. aeruginosa grew slightly faster thanChromobacterium sp. The strains were able to grow and oxidize acetonitrile at concentrations as high as 600 mM. However, higher concentrations inhibited growth and oxygen uptake. Degradation studies with (14C)acetonitrile indicated 57% of acetonitrile was degraded byPseudomonas aeruginosa as compared to 43% byChromobacterium. The isolates utilized different nitrile compounds as carbon substrates.  相似文献   
72.

In this study we tested the hypotheses that root classes would exhibit distinctive anatomical and architectural responses to drought stress, and that those responses would vary along the root axes. The root systems of four maize (Zea mays L.) sweet corn genotypes designated SC1, SC2, SC3 and SC4 were phenotyped under well-watered and drought treatments in greenhouse mesocosms, permitting increasing stratification of moisture availability as the drought progressed. Anatomical and architectural responses to drought were evaluated for each root class. Lignin distribution was assessed by image processing of UV-illuminated root cross-sections acquired by laser ablation tomography. The two cultivars with less biomass reduction under drought, SC3 and SC4, substantially enhanced lateral root development along the apical segments of axial roots when plants were grown with drought stress. These segments grew into the deeper part of the mesocosm where more moisture was available. Apical segments of the axial and large lateral roots from drought-stressed plants were thicker and had greater theoretical axial water conductance than basal segments, especially in SC3 and SC4. Basal segments of crown roots of SC3 and SC4 showed increased lignification of the stele under drought. Root anatomical and architectural responses to drought are complex and vary among cultivars and root classes, and along root axes. Drought-induced proliferation of lateral roots on apical segments of axial roots would be expected to enhance deep water acquisition, while lignification of axial roots could help preserve axial water transport.

  相似文献   
73.
Oxidative stress, induced by various neurodegenerative diseases, initiates a cascade of events leading to apoptosis, and thus plays a critical role in neuronal injury. In this study, we have investigated the potential neuroprotective effect of the octadecaneuropeptide (ODN) on 6‐hydroxydopamine (6‐OHDA)‐induced oxidative stress and apoptosis in cerebellar granule neurons (CGN). ODN, which is produced by astrocytes, is an endogenous ligand for both central‐type benzodiazepine receptors (CBR) and a metabotropic receptor. Incubation of neurons with subnanomolar concentrations of ODN (10?18 to 10?12 M) inhibited 6‐OHDA‐evoked cell death in a concentration‐dependent manner. The effect of ODN on neuronal survival was abrogated by the metabotropic receptor antagonist, cyclo1–8[DLeu5]OP, but not by a CBR antagonist. ODN stimulated polyphosphoinositide turnover and ERK phosphorylation in CGN. The protective effect of ODN against 6‐OHDA toxicity involved the phospholipase C/ERK MAPK transduction cascade. 6‐OHDA treatment induced an accumulation of reactive oxygen species, an increase of the expression of the pro‐apoptotic gene Bax, a drop of the mitochondrial membrane potential and a stimulation of caspase‐3 activity. Exposure of 6‐OHDA‐treated cells to ODN blocked all the deleterious effects of the toxin. Taken together, these data demonstrate for the first time that ODN is a neuroprotective agent that prevents 6‐OHDA‐induced oxidative stress and apoptotic cell death.  相似文献   
74.
75.
Many studies have been performed to assess the potential utility of natural products as immunomodulatory agents to enhance host responses against infection or to ameliorate immune-based pathologies. To determine whether eriodictyol has immunomodulatory effects and clarify which types of immune effector cells are stimulated in vitro, we investigated the stimulatory effect of eriodictyol on spleen cells isolated from BALB/c mice. Eriodictyol significantly stimulated splenocyte proliferation. However, only B lymphocytes (not T lymphocytes) could be stimulated by eriodictyol in a dose-related manner. Studies assessing potential effect of eriodictyol on innate immunity reported that eriodictyol enhanced significantly the killing activity of natural killer (NK) cells, T lymphocytes, and macrophages. We also demonstrated that eriodictyol inhibited nitric oxide (NO) production and lysosomal enzyme activity in murine peritoneal macrophages cultured ex-vivo, suggesting a potential anti-inflammatory effect in situ. Eriodictyol revealed also a cellular anti-oxidant activity in splenocytes and macrophages. Furthermore, eriodictyol increased catalase activity in spleen cells. From this data, it can be concluded that eriodictyol exhibited an immunomodulatory effect that could be ascribed in part to a cytoprotective effect related to its anti-oxidant activity.  相似文献   
76.
77.
The N‐end rule denotes the relationship between the identity of the amino‐terminal residue of a protein and its in vivo half‐life. Since its discovery in 1986, the N‐end rule has generally been described by a defined set of rules for determining whether an amino‐terminal residue is stabilizing or not. However, recent studies are revealing that this N‐end rule (or N‐degron concept) is less straightforward than previously appreciated. For instance, it is unveiled that N‐terminal acetylation of N‐terminal residues may create a degradation signal (Ac‐degron) that promotes the degradation of target proteins. A recent high‐throughput dissection of degrons in yeast proteins amino termini intriguingly suggested that the hydrophobicity of amino‐terminal residues—but not the N‐terminal acetylation status—may be the indispensable feature of amino‐terminal degrons. Herein, these recent advances in N‐terminal acetylation and the complexity of N‐terminal degradation signals in the context of the N‐degron pathway are analyzed.  相似文献   
78.
Molecular Biology Reports - Mycobacterium tuberculosis complex (MTBC) has the potential to cause infections in animals and human beings. The combination of real-time PCR targeting atpE or lpqT and...  相似文献   
79.
Patulin (PAT) is a mycotoxin produced by several species of the genera of Penicillium, Aspergillus, and Byssochlamys principally by Penicillium expansum. This mycotoxin is suspected to affect several organs including kidney and liver. However, its toxic effect on heart remains unknown. The present study investigated for the first time the cardiotoxic effect of PAT in mice. We demonstrated that PAT increased creatinin phosphokinase (CPK) level, induced lipoperoxydation and protein oxidation, and triggered the antioxidant enzymes such as superoxide dismutase and catalase activities. We also demonstrated that acute administration of PAT triggers apoptosis via P53 overexpression and caspase 3 activation. We further investigated the antioxidant efficiency of crocin (CRO), a carotenoid pigment, against PAT‐induced cardiotoxicity. We found that pretreatment with CRO prevents cardiac impairment by reducing CPK levels, restoring the redox statute and suppressing apoptosis. Collectively, our data provide new preventive effect of CRO toward PAT‐induced cardiotoxicity in mice.  相似文献   
80.
Bioprocess and Biosystems Engineering - Herein, we systematically reported the capability of T. harzianum RY44 for decolorization of Mordant orange-1. The fungi strains were isolated from the...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号