全文获取类型
收费全文 | 387篇 |
免费 | 44篇 |
专业分类
431篇 |
出版年
2022年 | 2篇 |
2021年 | 4篇 |
2020年 | 5篇 |
2019年 | 6篇 |
2018年 | 7篇 |
2016年 | 9篇 |
2015年 | 16篇 |
2014年 | 17篇 |
2013年 | 12篇 |
2012年 | 40篇 |
2011年 | 31篇 |
2010年 | 16篇 |
2009年 | 12篇 |
2008年 | 26篇 |
2007年 | 17篇 |
2006年 | 21篇 |
2005年 | 18篇 |
2004年 | 11篇 |
2003年 | 15篇 |
2002年 | 22篇 |
2001年 | 11篇 |
2000年 | 9篇 |
1999年 | 7篇 |
1998年 | 9篇 |
1997年 | 6篇 |
1996年 | 4篇 |
1995年 | 3篇 |
1994年 | 3篇 |
1993年 | 4篇 |
1992年 | 4篇 |
1991年 | 3篇 |
1990年 | 3篇 |
1989年 | 2篇 |
1988年 | 2篇 |
1987年 | 4篇 |
1986年 | 3篇 |
1984年 | 2篇 |
1983年 | 3篇 |
1982年 | 5篇 |
1981年 | 4篇 |
1978年 | 5篇 |
1977年 | 2篇 |
1973年 | 2篇 |
1972年 | 3篇 |
1971年 | 2篇 |
1969年 | 3篇 |
1968年 | 2篇 |
1923年 | 1篇 |
1920年 | 1篇 |
1909年 | 1篇 |
排序方式: 共有431条查询结果,搜索用时 93 毫秒
21.
Recent studies suggest that progestin receptors may be activated in vivo by neurotransmitters in the absence of ligand. More specifically, vaginal-cervical stimulation (VCS) can influence sexual behavior by activating progestin receptors in the absence of progesterone. Another way to test if progestin receptors are influenced by particular stimuli is to examine progestin receptor immunostaining. We report that progestin receptor immunoreactivity is decreased in the forebrain of estradiol-primed ovariectomized (OVX) rats within 1 h after a subcutaneous injection of progesterone, a time by which rapid down-regulation of progestin receptors does not seem to have occurred. In estradiol-primed OVX rats, VCS also decreased progestin receptor immunoreactivity within 1 h in the medial preoptic area, but not in any other area examined. To determine if the decrease in immunoreactivity by VCS was due to adrenal secretions or by ligand-independent activation of progestin receptors, we repeated the experiment in estradiol-primed OVX/adrenalectomized rats. Prior removal of the adrenal glands blocked the rapid decrease in progestin receptor immunoreactivity, even though data from other experiments suggest that progestin receptors are activated by VCS at this time. These studies suggest the possibility that progestin receptors may be affected differentially by progesterone-dependent or by progesterone-independent pathways. This raises the possibility that activation of progestin receptors by these two distinct pathways may lead to different neuronal consequences. 相似文献
22.
23.
24.
25.
The evolutionary success of primate lentiviruses reflects their high capacity to mutate and adapt to new host species, immune responses within individual hosts, and, in recent years, antiviral drugs. APOBEC3G (A3G) and APOBEC3F (A3F) are host cell DNA-editing enzymes that induce extensive HIV-1 mutation that severely attenuates viral replication. The HIV-1 virion infectivity factor (Vif), expressed in vivo, counteracts the antiviral activity of A3G and A3F by inducing their degradation. Other APOBECs may contribute more to viral diversity by inducing less extensive mutations allowing viral replication to persist. Here we show that in APOBEC3C (A3C)-expressing cells infected with the patient-derived HIV-1 molecular clones 210WW, 210WM, 210MW, and 210MM, and the lab-adapted molecular clone LAI, viral G-to-A mutations were detected in the presence of Vif expression. Mutations occurred primarily in the GA context and were relatively infrequent, thereby allowing for spreading infection. The mutations were absent in cells lacking A3C but were induced after transient expression of A3C in the infected target cell. Inhibiting endogenous A3C by RNA interference in Magi cells prevented the viral mutations. Thus, A3C is necessary and sufficient for G-to-A mutations in some HIV-1 strains. A3C-induced mutations occur at levels that allow replication to persist and may therefore contribute to viral diversity. Developing drugs that inhibit A3C may be a novel strategy for delaying viral escape from immune or antiretroviral inhibition. 相似文献
26.
Sita S. Withers Philip H. Kass Carlos O. Rodriguez Katherine A. Skorupski Danielle O’Brien Teri A. Guerrero Kristen D. Sein Robert B. Rebhun 《Translational oncology》2014,7(3):377-383
Fasting reduces gastrointestinal cellular proliferation rates through G1 cycle blockade and can promote cellular protection of normal but not cancer cells through altered cell signaling including down-regulation of insulin-like growth factor 1 (IGF-1). Consequently, the purpose of this study was to determine the effects of fasting on delayed-type chemotherapy-induced nausea and vomiting in dogs receiving doxorubicin. This prospective randomized crossover study involved intended administration of two doses of doxorubicin. Cancer-bearing dogs were randomized to be fasted for 24 hours beginning at 6 P.M. the night before the first or second doxorubicin administration, and all treatments were administered within an hour before or after 12 P.M. Dogs were fed normally before the alternate dose. Circulating IGF-1 concentrations were determined from serum samples obtained immediately before each doxorubicin treatment. Data from 35 doses were available from 20 dogs enrolled. Dogs that were fasted exhibited a significantly lower incidence of vomiting, when compared to fed dogs (10% compared to 67%, P = .020). Furthermore, among the 15 dogs that completed crossover dosing, vomiting was abrogated in four of five dogs that experienced doxorubicin-induced vomiting when fed normally (P = .050). No differences in other gastrointestinal, constitutional, or bone marrow toxicities or serum IGF-1 levels were observed. 相似文献
27.
Garnett JP Nguyen TT Moffatt JD Pelham ER Kalsi KK Baker EH Baines DL 《Journal of immunology (Baltimore, Md. : 1950)》2012,189(1):373-380
The glucose concentration of the airway surface liquid (ASL) is much lower than that in blood and is tightly regulated by the airway epithelium. ASL glucose is elevated in patients with viral colds, cystic fibrosis, chronic obstructive pulmonary disease, and asthma. Elevated ASL glucose is also associated with increased incidence of respiratory infection. However, the mechanism by which ASL glucose increases under inflammatory conditions is unknown. The aim of this study was to investigate the effect of proinflammatory mediators (PIMs) on the mechanisms governing airway glucose homeostasis in polarized monolayers of human airway (H441) and primary human bronchial epithelial (HBE) cells. Monolayers were treated with TNF-α, IFN-γ, and LPS during 72 h. PIM treatment led to increase in ASL glucose concentration and significantly reduced H441 and HBE transepithelial resistance. This decline in transepithelial resistance was associated with an increase in paracellular permeability of glucose. Similar enhanced rates of paracellular glucose flux were also observed across excised trachea from LPS-treated mice. Interestingly, PIMs enhanced glucose uptake across the apical, but not the basolateral, membrane of H441 and HBE monolayers. This increase was predominantly via phloretin-sensitive glucose transporter (GLUT)-mediated uptake, which coincided with an increase in GLUT-2 and GLUT-10 abundance. In conclusion, exposure of airway epithelial monolayers to PIMs results in increased paracellular glucose flux, as well as apical GLUT-mediated glucose uptake. However, uptake was insufficient to limit glucose accumulation in ASL. To our knowledge, these data provide for the first time a mechanism to support clinical findings that ASL glucose concentration is increased in patients with airway inflammation. 相似文献
28.
Kathleen K. Treseder Teri C. Balser Mark A. Bradford Eoin L. Brodie Eric A. Dubinsky Valerie T. Eviner Kirsten S. Hofmockel Jay T. Lennon Uri Y. Levine Barbara J. MacGregor Jennifer Pett-Ridge Mark P. Waldrop 《Biogeochemistry》2012,109(1-3):7-18
Microbial communities can potentially mediate feedbacks between global change and ecosystem function, owing to their sensitivity to environmental change and their control over critical biogeochemical processes. Numerous ecosystem models have been developed to predict global change effects, but most do not consider microbial mechanisms in detail. In this idea paper, we examine the extent to which incorporation of microbial ecology into ecosystem models improves predictions of carbon (C) dynamics under warming, changes in precipitation regime, and anthropogenic nitrogen (N) enrichment. We focus on three cases in which this approach might be especially valuable: temporal dynamics in microbial responses to environmental change, variation in ecological function within microbial communities, and N effects on microbial activity. Four microbially-based models have addressed these scenarios. In each case, predictions of the microbial-based models differ—sometimes substantially—from comparable conventional models. However, validation and parameterization of model performance is challenging. We recommend that the development of microbial-based models must occur in conjunction with the development of theoretical frameworks that predict the temporal responses of microbial communities, the phylogenetic distribution of microbial functions, and the response of microbes to N enrichment. 相似文献
29.
Metabolism of Benzyladenine is Impaired in a Mutant of Arabidopsis thaliana Lacking Adenine Phosphoribosyltransferase Activity 总被引:2,自引:0,他引:2 下载免费PDF全文
Formation of the riboside-5′-monophosphate is a general feature of the metabolism of cytokinins in plants. As part of a study of the biological significance of the nucleotide form of cytokinins, we analyzed a mutant of Arabidopsis thaliana deficient in adenine phosphoribosyltransferase (APRT) activity for its ability to metabolize N6-benzyladenine (BA). Formation of N6-benzyladenosine-5′-monophosphate (BAMP) was assayed in vivo, by feeding tritiated BA to wild-type and mutant plantlets, and in crude plantlet extracts. Metabolites were separated by high performance liquid chromatography and quantitated by on-line liquid scintillation spectrometry. BA was rapidly absorbed by A. thaliana plantlets and primarily converted to BAMP and to BA 7- and 9-glucosides. BA was also rapidly absorbed by APRT-deficient plantlets, but its conversion to BAMP was strongly reduced. Formation of BAMP from N6-benzyladenosine was not affected in the mutant plantlets. In vitro conversion of BA to its nucleoside-5′-monophosphate was detected in crude extracts of wild-type plantlets, but not in extracts of APRT-deficient plantlets. Therefore, results of both assays indicate that APRT-deficient tissue does not convert BA to BAMP to a significant extent. Further, nondenaturing isoelectric focusing analysis of APRT activity in leaf extracts indicated that the enzyme activities which metabolize adenine and BA into their corresponding riboside-5′-monophosphate in extracts of wild-type plantlets have the same apparent isoelectric point. These activities were not detected in extracts prepared from APRT-deficient plantlets. Thus, these results demonstrate that APRT is the main enzyme which converts BA to its nucleotide form in young A. thaliana plants and that the ribophosphorylation of BA is not a prerequisite of its absorption by the plantlets. 相似文献
30.
Keertan Dheda Virginia Davids Laura Lenders Teri Roberts Richard Meldau Daphne Ling Laurence Brunet Richard van Zyl Smit Jonathan Peter Clare Green Motasim Badri Leonardo Sechi Surendra Sharma Michael Hoelscher Rodney Dawson Andrew Whitelaw Jonathan Blackburn Madhukar Pai Alimuddin Zumla 《PloS one》2010,5(3)