首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   217篇
  免费   26篇
  2022年   2篇
  2017年   2篇
  2016年   6篇
  2015年   11篇
  2014年   8篇
  2013年   6篇
  2012年   15篇
  2011年   12篇
  2010年   6篇
  2009年   3篇
  2008年   9篇
  2007年   11篇
  2006年   11篇
  2005年   8篇
  2004年   3篇
  2003年   3篇
  2002年   6篇
  2001年   10篇
  2000年   10篇
  1999年   2篇
  1998年   7篇
  1997年   7篇
  1996年   4篇
  1995年   4篇
  1994年   4篇
  1993年   5篇
  1992年   5篇
  1990年   3篇
  1988年   2篇
  1987年   5篇
  1986年   3篇
  1984年   2篇
  1983年   2篇
  1982年   5篇
  1981年   3篇
  1980年   3篇
  1978年   5篇
  1976年   2篇
  1973年   2篇
  1972年   3篇
  1971年   2篇
  1969年   3篇
  1968年   2篇
  1954年   1篇
  1949年   1篇
  1946年   1篇
  1939年   1篇
  1923年   1篇
  1920年   1篇
  1909年   1篇
排序方式: 共有243条查询结果,搜索用时 15 毫秒
31.

Background  

Lignin and hemicelluloses are the major components limiting enzyme infiltration into cell walls. Determination of the topochemical distribution of lignin and aromatics in sugar cane might provide important data on the recalcitrance of specific cells. We used cellular ultraviolet (UV) microspectrophotometry (UMSP) to topochemically detect lignin and hydroxycinnamic acids in individual fiber, vessel and parenchyma cell walls of untreated and chlorite-treated sugar cane. Internodes, presenting typical vascular bundles and sucrose-storing parenchyma cells, were divided into rind and pith fractions.  相似文献   
32.
Double nuclear transfer begins with the transfer of nuclear DNA from a donor cell into an enucleated recipient oocyte. This reconstructed oocyte is allowed to develop to the pronuclear stage, where the pronuclei are transferred into an enucleated zygote. This reconstructed zygote is then transferred to a surrogate sow. The genetic integrity of cloned offspring can be compromised by the transmission of mitochondrial DNA from the donor cell, the recipient oocyte and the recipient zygote. We have verified through the use of sequence analysis, restriction fragment length polymorphism analysis, allele specific PCR and primer extension polymorphism analysis that following double nuclear transfer the donor cell mtDNA is eliminated. However, it is likely that the recipient oocyte and zygote mitochondrial DNA are transmitted to the offspring, indicating bimaternal mitochondrial DNA transmission. This pattern of mtDNA inheritance is similar to that observed following cytoplasmic transfer and violates the strict unimaternal inheritance of mitochondrial DNA to offspring. This form of transmission raises concerns regarding the genetic integrity of cloned offspring and their uses in studies that require metabolic analysis or a stable genetic environment where only one variable is under analysis, such as in knockout technology.  相似文献   
33.

Background  

The tear film is a thin layer of fluid that covers the ocular surface and is involved in lubrication and protection of the eye. Little is known about the protein composition of tear fluid but its deregulation is associated with disease states, such as diabetic dry eyes. This makes this body fluid an interesting candidate for in-depth proteomic analysis.  相似文献   
34.
35.
The glucose concentration of the airway surface liquid (ASL) is much lower than that in blood and is tightly regulated by the airway epithelium. ASL glucose is elevated in patients with viral colds, cystic fibrosis, chronic obstructive pulmonary disease, and asthma. Elevated ASL glucose is also associated with increased incidence of respiratory infection. However, the mechanism by which ASL glucose increases under inflammatory conditions is unknown. The aim of this study was to investigate the effect of proinflammatory mediators (PIMs) on the mechanisms governing airway glucose homeostasis in polarized monolayers of human airway (H441) and primary human bronchial epithelial (HBE) cells. Monolayers were treated with TNF-α, IFN-γ, and LPS during 72 h. PIM treatment led to increase in ASL glucose concentration and significantly reduced H441 and HBE transepithelial resistance. This decline in transepithelial resistance was associated with an increase in paracellular permeability of glucose. Similar enhanced rates of paracellular glucose flux were also observed across excised trachea from LPS-treated mice. Interestingly, PIMs enhanced glucose uptake across the apical, but not the basolateral, membrane of H441 and HBE monolayers. This increase was predominantly via phloretin-sensitive glucose transporter (GLUT)-mediated uptake, which coincided with an increase in GLUT-2 and GLUT-10 abundance. In conclusion, exposure of airway epithelial monolayers to PIMs results in increased paracellular glucose flux, as well as apical GLUT-mediated glucose uptake. However, uptake was insufficient to limit glucose accumulation in ASL. To our knowledge, these data provide for the first time a mechanism to support clinical findings that ASL glucose concentration is increased in patients with airway inflammation.  相似文献   
36.
The 16S rRNA gene is conserved across all bacteria and as such is routinely targeted in PCR surveys of bacterial diversity. PCR primer design aims to amplify as many different 16S rRNA gene sequences from as wide a range of organisms as possible, though there are no suitable 100% conserved regions of the gene, leading to bias. In the gastrointestinal tract, bifidobacteria are a key genus, but are often under-represented in 16S rRNA surveys of diversity. We have designed modified, 'bifidobacteria-optimised' universal primers, which we have demonstrated detection of bifidobacterial sequence present in DNA mixtures at 2% abundance, the lowest proportion tested. Optimisation did not compromise the detection of other organisms in infant faecal samples. Separate validation using fluorescence in situ hybridisation (FISH) shows that the proportions of bifidobacteria detected in faecal samples were in agreement with those obtained using 16S rRNA based pyrosequencing. For future studies looking at faecal microbiota, careful selection of primers will be key in order to ensure effective detection of bifidobacteria.  相似文献   
37.
Porphyromonas gingivalis, a host-adapted opportunistic pathogen, produces a serine phosphatase, SerB, known to affect virulence, invasion and persistence within the host cell. SerB induces actin filament rearrangement in epithelial cells, but the mechanistic basis of this is not fully understood. Here we investigated the effects of SerB on the actin depolymerizing host protein cofilin. P. gingivalis infection resulted in the dephosphorylation of cofilin in gingival epithelial cells. In contrast, a SerB-deficient mutant of P. gingivalis was unable to cause cofilin dephosphorylation. The involvement of cofilin in P. gingivalis invasion was determined by quantitative image analysis of epithelial cells in which cofilin had been knocked down or knocked in with various cofilin constructs. siRNA-silencing of cofilin led to a significant decrease in numbers of intracellular P. gingivalis marked by an absence of actin colocalization. Transfection with wild-type cofilin or constitutively active cofilin both increased numbers of intracellular bacteria, while constitutively inactive cofilin abrogated invasion. Expression of LIM kinase resulted in reduced P. gingivalis invasion, an effect that was reversed by expression of constitutively active cofilin. These results show that P. gingivalis SerB activity induces dephosphorylation of cofilin, and that active cofilin is required for optimal invasion into gingival epithelial cells.  相似文献   
38.

Background

Influenza is an important cause of morbidity and mortality for frail older people. Whilst the antiviral drug oseltamivir (a neuraminidase inhibitor) is approved for treatment and prophylaxis of influenza during outbreaks, there have been no trials comparing treatment only (T) versus treatment and prophylaxis (T&P) in Aged Care Facilities (ACFs). Our objective was to compare a policy of T versus T&P for influenza outbreaks in ACFs.

Methods and Findings

We performed a cluster randomised controlled trial in 16 ACFs, that followed a policy of either “T”—oseltamivir treatment (75 mg twice a day for 5 days)—or “T&P”—treatment and prophylaxis (75 mg once a day for 10 days) for influenza outbreaks over three years, in addition to enhanced surveillance. The primary outcome measure was the attack rate of influenza. Secondary outcomes measures were deaths, hospitalisation, pneumonia and adverse events. Laboratory testing was performed to identify the viral cause of influenza-like illness (ILI) outbreaks. The study period 30 June 2006 to 23 December 2008 included three southern hemisphere winters. During that time, influenza was confirmed as the cause of nine of the 23 ILI outbreaks that occurred amongst the 16 ACFs. The policy of T&P resulted in a significant reduction in the influenza attack rate amongst residents: 93/255 (36%) in residents in T facilities versus 91/397 (23%) in T&P facilities (p = 0.002). We observed a non-significant reduction in staff: 46/216 (21%) in T facilities versus 47/350 (13%) in T&P facilities (p = 0.5). There was a significant reduction in mean duration of outbreaks (T = 24 days, T&P = 11 days, p = 0.04). Deaths, hospitalisations and pneumonia were non-significantly reduced in the T&P allocated facilities. Drug adverse events were common but tolerated.

Conclusion

Our trial lacked power but these results provide some support for a policy of “treatment and prophylaxis” with oseltamivir in controlling influenza outbreaks in ACFs.

Trail Registration

Australian Clinical Trials Registry ACTRN12606000278538  相似文献   
39.
Human activities have degraded riparian systems in numerous ways, including homogenization of the floodplain landscape and minimization of extreme flows. We analyzed the effects of changes in these and other factors for extinction–colonization dynamics of a threatened Bank Swallow population along the upper Sacramento River, California, U.S.A. We monitored Bank Swallow distributions along a 160‐km stretch of the river from 1986–1992 and 1996–2003 and tested whether site extinctions and colonizations corresponded with changes in maximum river discharge, surrounding land cover, estimated colony size, temperature, and precipitation. Colonization probabilities increased with maximum discharge. Extinction probabilities decreased with proximity to the nearest grassland, decreased with colony size, and increased with maximum discharge. To explore the implications for restoration, we incorporated the statistically estimated effects of distance to grassland and maximum discharge into simple metapopulation models. Under current conditions, the Bank Swallow metapopulation appears to be in continued decline, although stable or increasing numbers cannot be ruled out with the existing data. Maximum likelihood parameters from these regression models suggest that the Sacramento River metapopulation could be restored to 45 colonies through moderate amounts of grassland restoration, large increases in discharge, or direct restoration of nesting habitat by removing approximately 10% of existing bank protection (riprap) from suitable areas. Our results highlight the importance of grassland restoration, mixed benefits of restoring high spring discharge, and the importance of within‐colony dynamics as areas for future research.  相似文献   
40.
Many biochemical reactions in plants involve the transfer of a methyl group from S -adenosyl- l -methionine (SAM). The transfer of the methyl group from SAM generates S -adenosyl- l -homocysteine (SAH), a potent inhibitor of SAM-dependent methyltransferases (MTs). To mitigate the toxic effects of SAH on MT activity, SAH is removed by SAH hydrolase (SAHH, EC 3.3.1.1) in a reaction generating homocysteine and adenosine (Ado). However, SAHH catalyzes a reversible reaction that is favored to move in the direction of SAH hydrolysis only by removal of these products. Removal of Ado is reported to exert a greater influence on promoting SAH hydrolysis. Whereas animals appear to rely upon Ado deaminase (EC 3.5.4.4) to catabolize Ado, plants appear to use adenosine kinase (EC 2.7.1.20) for this important role. Compounds undergoing methylation represent a broad spectrum of chemically diverse substrates ranging from nucleic acids, lipids and cell wall components to comparatively simpler amines, alcohols and metal halides. Given the diverse nature of methyl acceptor compounds, it is very likely that the demand for SAM synthesis and SAH removal changes both temporally and spatially during the course of plant growth and development. Plants also use SAM as a precursor for the synthesis of ethylene, polyamines, biotin and nicotianamine. These uses are also expected to undergo changes reflective of the metabolic activities of different plants, plant organs, or cells. This review examines the various uses of SAM in plants and addresses how they allocate this resource to satisfy potentially competing needs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号