首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   46篇
  免费   8篇
  2023年   3篇
  2022年   2篇
  2021年   1篇
  2020年   2篇
  2019年   9篇
  2018年   5篇
  2017年   2篇
  2016年   2篇
  2015年   1篇
  2014年   7篇
  2013年   1篇
  2012年   1篇
  2011年   5篇
  2010年   3篇
  2008年   3篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  1992年   1篇
排序方式: 共有54条查询结果,搜索用时 218 毫秒
21.
Poloxamer 188 is a complex polydisperse mixture of non-ionic macromolecules. Adverse non-IgE-mediated hypersensitivity reactions occur in some individuals following intravenous injection of poloxamer 188-based pharmaceuticals, presumably via complement activation. Here we have delineated potential causal chemical and biological interactive factors behind poloxamer 188-induced complement activation in human serum specimens. We identified the molecular constituents inherent in poloxamer 188 preparations and studied their effect on generation of the two complement split products, SC5b-9 and Bb. Poloxamer 188 activated complement at sub-micellar concentrations and the results indicated the potential involvement of all three known complement activation pathways. The poloxamer-induced rise of SC5b-9 in human sera was abolished in the presence of a recombinant truncated soluble form of complement receptor type 1, thus confirming the role of C3/C5 convertases in the activation process. Poloxamer 188-mediated complement activation is an intrinsic property of these macromolecules and was independent of the degree of sample polydispersity, as opposed to other non-polymeric constituents. Poloxamer 188 preparations also contained unsaturated chains of diblock copolymers capable of generating SC5b-9 in human sera; this effect was terminated following the removal of double bonds by catalytic hydrogenation. By quasi-elastic light scattering, we established interaction between poloxamer and lipoproteins; interestingly, poloxamer-induced rise in SC5b-9 was significantly suppressed when serum HDL and LDL cholesterol levels were increased above normal to mimic two relevant clinical situations. This observation was consistent with previously reported data from patients with abnormal or elevated lipid profiles where no or poor complement activation by poloxamer 188 occurred. Our findings could provide the basis of novel approaches to the prevention of poloxamer-mediated complement activation.  相似文献   
22.

Background

Adoptive cell therapy with engineered T cells expressing chimeric antigen receptors (CARs) originated from antibodies is a promising strategy in cancer immunotherapy. Several unsuccessful trials, however, highlight the need for alternative conventional binding domains and the better combination of costimulatory endodomains for CAR construction to improve the effector functions of the engineered T cells. Camelid single-domain antibodies (VHHs), which are the smallest single domain antibodies, can endow great targeting ability to CAR-engineered T cells.

Methods

We have developed a method to generate genetically engineered Jurkat T cells armed with a CAR comprising the anti-HER2 VHH as targeting moiety. From an immune camel library, five VHH clones were selected as a set of oligoclonal anti-HER2 VHHs that exhibited diverse binding abilities and joined them to CD28-CD3ζ and CD28-OX40-CD3ζ signaling endodomains. Jurkat T cells expression of VHH-CARs and cell functions were evaluated.

Results

The oligoclonal engineered T cells showed higher proliferation, cytokine secretion and cytotoxicity than each individual VHH-CAR-engineered Jurkat T cells.

Conclusions

The combination of superior targeting ability of oligoclonal VHHs with the third generation CAR can substantially improve the function of engineered T cells.

General significance

Antigen-specific directed oligoclonal T cells are alternatively promising, but safer systems, to combat tumor cells.  相似文献   
23.
24.
Adipose-derived stem cells (ADSCs) are a subset of mesenchymal stem cells that their therapeutic effects in various diseases make them an interesting tool in cell therapy. In the current study, we aimed to overexpress interferon-β (IFN-β) and leukemia inhibitory factor (LIF) cytokines in human ADSCs to evaluate the impact of this overexpression on human ADSCs properties. Here, we designed a construct containing IFN-β and LIF and then, transduced human adipose-derived stem cells (hADSCs) by this construct via a lentiviral vector (PCDH-513B). We assessed the ability of long-term expression of the transgene in transduced cells by western blot analysis and enzyme-linked immunosorbent assay techniques on Days 15, 45, and 75 after transduction. For the evaluation of stem cell properties, flow cytometry and differentiation assays were performed. Finally, the MTT assay was done to assess the proliferation of transduced cells compares to controls. Our results showed high-efficiency transduction with highest expression rates on Day 75 after transduction which were 70 pg/ml for IFN-β and 77.9 pg/ml for LIF in comparison with 25.60 pg/ml and 27.63 pg/ml, respectively, in untransduced cells (p = .0001). Also, transduced cells expressed a high level of ADSCs surface markers and successfully differentiated into adipocytes, chondrocytes, neural cells, and osteocytes besides the preservation rate of proliferation near untreated cells (p = .88). All in all, we successfully constructed an hADSC population stably overexpressed IFN-β and LIF cytokines. Considering the IFN-β and LIF anti-inflammatory and neuroprotective effects as well as immune-regulatory properties of hADSCs, the obtained cells of this study could be subjected for further evaluations in experimental autoimmune encephalomyelitis mice model.  相似文献   
25.
Nanoliposomes containing phosphatidic acid or cardiolipin are able to target in vitro with very high affinity amyloid-β (Aβ), a peptide whose overproduction and progressive aggregation in the brain play a central role in the pathogenesis of Alzheimer's disease. However, the presence of the blood–brain barrier (BBB) severely limits the penetration of either drugs or drug vehicles (nanoparticles) to the brain. Therefore, there is a need to develop and design approaches specifically driving nanoparticles to brain in a better and effective way. The aim of the present investigation is the search of a strategy promoting the interaction of liposomes containing acidic phospholipids with brain capillary endothelial cells, as a first step toward their passage across the BBB. We describe the preparation and physical characterization of nano-sized liposomes decorated with peptides derived from apolipoprotein E and characterize their interaction with human immortalized brain capillary cells cultured in vitro (hCMEC/D3). For this purpose, we synthesized two ApoE-derived peptides (the fragment 141–150 or its tandem dimer) containing a cysteine residue at the C-terminus and decorated NL by exploiting the cysteine reaction with a maleimide-group on the nanoparticle surface. NL without ApoE functionalization did not show either relevant membrane accumulation or cellular uptake, as monitored by confocal microscopy using fluorescently labeled nanoliposomes or quantifying the cell-associated radioactivity of isotopically labeled nanoliposomes. The uptake of nanoliposomes by cell monolayers was enhanced by ApoE-peptide-functionalization, and was higher with the fragment 141–150 than with its tandem dimer. The best performance was displayed by nanoliposomes containing phosphatidic acid and decorated with the ApoE fragment 141–150. Moreover, we show that the functionalization of liposomes containing acidic phospholipids with the ApoE fragment 141–150 scarcely affects their reported ability to bind Aβ peptide in vitro. These are important and promising features for the possibility to use these nanoliposomes for the targeting of Aβ in the brain districts.  相似文献   
26.
Insulin resistance (IR) precedes the development of type 2 diabetes (T2D) and increases cardiovascular disease risk. Although genome wide association studies (GWAS) have uncovered new loci associated with T2D, their contribution to explain the mechanisms leading to decreased insulin sensitivity has been very limited. Thus, new approaches are necessary to explore the genetic architecture of insulin resistance. To that end, we generated an iPSC library across the spectrum of insulin sensitivity in humans. RNA-seq based analysis of 310 induced pluripotent stem cell (iPSC) clones derived from 100 individuals allowed us to identify differentially expressed genes between insulin resistant and sensitive iPSC lines. Analysis of the co-expression architecture uncovered several insulin sensitivity-relevant gene sub-networks, and predictive network modeling identified a set of key driver genes that regulate these co-expression modules. Functional validation in human adipocytes and skeletal muscle cells (SKMCs) confirmed the relevance of the key driver candidate genes for insulin responsiveness.  相似文献   
27.
Nanoparticle-mediated gene delivery to tumour neovasculature   总被引:7,自引:0,他引:7  
The alpha(v)beta(3) integrin is a potential pharmacological target for anti-angiogenic therapy. A recent report describes the use of alpha(v)beta(3)-targeted nanoparticles to deliver a gene to tumour vasculature selectively. This resulted in substantial tumour regression in several experimental mouse tumour models. Hence, this approach has great potential for the treatment of human cancer.  相似文献   
28.
Delay‐and‐sum (DAS) is one of the most common algorithms used to construct the photoacoustic images due to its low complexity. However, it results in images with high sidelobes and low resolution. Delay‐and‐standard‐deviation (DASD) weighting factor can improve the contrast of the images compared to DAS. However, it still suffers from high sidelobes. In this work, a new weighting factor, named delay‐multiply‐and‐standard‐deviation (DMASD) is introduced to enhance the contrast of the reconstructed images compared to other mentioned methods. In the proposed method, the SD of the mutual multiplied delayed signals are calculated, normalized and multiplied to DAS beamformed data. The results show that DMASD improves the signal‐to‐noise‐ratio about 19.29 and 7.3 dB compared to DAS and DASD, respectively, for in vivo imaging of the sentinel lymph node. Moreover, the contrast ratio is improved by the DMASD about 23.61 and 10.81 dB compared to DAS and DASD, respectively.   相似文献   
29.
Radiation‐induced oral mucositis is a common and dose‐limiting complication of head and neck radiotherapy with no effective treatment. Previous studies revealed that sildenafil, a phosphodiesterase 5 inhibitor, has anti‐inflammatory and anti‐cancer effects. In this study, we investigated the effect of sildenafil on radiation‐induced mucositis in rats. Two doses of radiation (8 and 26 Gy X‐ray) were used to induce low‐grade and high‐grade oral mucositis, separately. A control group and three groups of sildenafil citrate‐treated rats (5, 10, and 40 mg/kg/day) were used for each dose of radiation. Radiation increased MDA and activated NF‐κB, ERK and JNK signalling pathways. Sildenafil significantly decreased MDA level, nitric oxide (NO) level, IL1β, IL6 and TNF‐α. The most effective dose of sildenafil was 40 mg/kg/day in this study. Sildenafil also significantly inhibited NF‐κB, ERK and JNK signalling pathways and increased bcl2/bax ratio. In addition, high‐dose radiation severely destructed the mucosal layer in histopathology and led to mucosal cell apoptosis in the TUNEL assay. Sildenafil significantly improved mucosal structure and decreased inflammatory cell infiltration after exposure to high‐dose radiation and reduced apoptosis in the TUNEL assay. These findings show that sildenafil can improve radiation‐induced oral mucositis and decrease the apoptosis of mucosal cells via attenuation of inflammation and oxidative stress.  相似文献   
30.
Diabetic retinopathy (DR) is a major cause of vision reduction in diabetic patients. Hyperglycemia is a known instigator for the development of DR, even though the role of oxidative stress pathways in the pathogenesis of DR is established. The studies indicate that microRNAs (miRNAs) are significant to the etiology of DR; changes in miRNAs expression levels may be associated with onset and progression of DR. In addition, miRNAs have emerged as a useful disease marker due to their availability and stability in detecting the severity of DR. The relationship between miRNAs expression levels and oxidative stress pathways has been investigated in several studies. The aim of this study is the examination of function and expression levels of target miRNAs in oxidative stress pathway and pathogenesis of diabetic retinopathy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号