首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   439篇
  免费   28篇
  2023年   2篇
  2022年   2篇
  2021年   8篇
  2020年   3篇
  2019年   10篇
  2018年   13篇
  2017年   7篇
  2016年   19篇
  2015年   16篇
  2014年   23篇
  2013年   37篇
  2012年   22篇
  2011年   17篇
  2010年   14篇
  2009年   19篇
  2008年   30篇
  2007年   21篇
  2006年   16篇
  2005年   23篇
  2004年   16篇
  2003年   14篇
  2002年   15篇
  2001年   8篇
  2000年   9篇
  1999年   7篇
  1998年   7篇
  1997年   4篇
  1996年   2篇
  1995年   9篇
  1994年   4篇
  1993年   6篇
  1992年   7篇
  1991年   5篇
  1990年   4篇
  1989年   5篇
  1988年   4篇
  1987年   4篇
  1986年   2篇
  1985年   3篇
  1984年   2篇
  1981年   3篇
  1980年   2篇
  1979年   5篇
  1977年   2篇
  1974年   2篇
  1972年   5篇
  1964年   1篇
  1962年   1篇
  1957年   1篇
  1952年   1篇
排序方式: 共有467条查询结果,搜索用时 46 毫秒
41.
42.
Lung infection with Pseudomonas aeruginosa, leading to chronic lung disease with impaired function, is the major course of morbidity and mortality among cystic fibrosis patients. The bacterium produces two lectins that bind to alpha-D-galactose (PA-IL) and L-fucose (PA-IIL), respectively, and lectin-carbohydrate interactions may be involved in microbial pathogenicity by creating bacterial adherence to epithelial and endothelial cells. An ideal animal model for P. aeruginosa infection has until now not been established, but the mink seems to be the only animal that has been reported to develop spontaneous P. aeruginosa infections in the airways. Since cystic fibrosis also severely may affect pancreatic function, we incubated sections from mink lungs and pancreas with a medium containing Pseudomonas lectins in order to detect in situ binding of the bacterial lectins. In the lungs, both lectins adhered to seromucinous glands located in the submucosa of the larger bronchi. Additionally, PA-IL reacted with the capillaries in the alveolar walls and with the small blood vessels forming the vasa vasorum around the larger vessels, while PA-IIL marked the goblet cells in the bronchial surface epithelium. In the pancreas, both lectins bound to the epithelium in the excretory ducts, and additionally, PA-IL strongly stained the pancreatic capillaries while PA-IIL staining was noticed in the apical part of acinar cells in the exocrine part of the gland while no lectin reaction could be recorded in the endocrine cells. Judging from the results in the present paper the mink should be considered a suitable model to study P. aeruginosa adherence.  相似文献   
43.
Small-cell lung cancer (SCLC) is an aggressive neuroendocrine subtype of lung cancer for which there is no effective treatment. Using a mouse model in which deletion of Rb1 and Trp53 in the lung epithelium of adult mice induces SCLC, we found that the Hedgehog signaling pathway is activated in SCLC cells independently of the lung microenvironment. Constitutive activation of the Hedgehog signaling molecule Smoothened (Smo) promoted the clonogenicity of human SCLC in vitro and the initiation and progression of mouse SCLC in vivo. Reciprocally, deletion of Smo in Rb1 and Trp53-mutant lung epithelial cells strongly suppressed SCLC initiation and progression in mice. Furthermore, pharmacological blockade of Hedgehog signaling inhibited the growth of mouse and human SCLC, most notably following chemotherapy. These findings show a crucial cell-intrinsic role for Hedgehog signaling in the development and maintenance of SCLC and identify Hedgehog pathway inhibition as a therapeutic strategy to slow the progression of disease and delay cancer recurrence in individuals with SCLC.  相似文献   
44.
Akt signaling pathway in pacing-induced heart failure   总被引:2,自引:0,他引:2  
Marked changes in energy substrate utilization occur during the progression of congestive heart failure (CHF) where fatty acid utilization, as the primary source of cardiac energy, is severely diminished, oxidative phosphorylation is down-regulated, and glucose uptake and utilization increase. Neither the signaling events or the molecular basis for the shift in substrate utilization have yet been elucidated. This study was designed to examine in the canine model of paced-induced CHF, the potential role of the Akt pathway in signaling the metabolic transitions central to progression to heart failure. Myocardial Akt levels were elevated in early heart failure (after 1–2 weeks of pacing) accompanied by increased levels of oxidative stress, cytokine tumor necrosis factor- (TNF-) and free fatty acid accumulation, reduced activity levels of mitochondrial respiratory complexes III and V and apoptosis initiation. At severe heart failure (3–4 weeks of pacing), there was significant further increase in myocardial apoptosis, with pronounced decline in myocardial Akt kinase activity. At this later stage, there were no further changes in free fatty acid accumulation, complex V activity or in oxidative stress levels indicating that these changes primarily occurred in the earlier stage of evolving heart failure. In contrast, during severe heart failure, both the reduction in complex III activity and increase in TNF- level became more pronounced. Our data provide critical support for the hypothesis that the Akt signaling pathway is a contributory element in the early signaling events leading to the progression of pacing-induced heart failure, accompanying the shift in substrate utilization. (Mol Cell Biochem 268: 103–110, 2005)  相似文献   
45.
The specificity and binding capacity of the galactophilic lectin from the Gram negative bacterium Pseudomonas aeruginosa (PA-IL) was determined by solid phase measurements using galactosylated neoglycoproteins immobilized on microtiter plates. The bacterial lectin reacted with both short chain (monosaccharide) and long chain (pentasaccharide) glycoconjugates. Among the Galα1-XGal disaccharides, the highest affinity was observed towards the Galα1-3Gal structure. Raising the incubation temperature enhanced the lectin-polysaccharide agglutination, and it is suggested that binding to certain conformations of polysaccharides could vary between lectins with the same monocarbohydrate specificity and that this activity may, in part, be temperature dependent. Histochemical examination of lectin binding to different porcine tissues suggests a differential glycosylation of the carbohydrate antigens on endothelial cells in various parts of the vascular system. In the pancreas, PA-IL also adhered to the excretory ducts. These observations on PA-IL binding could be of importance both to determine infection foci in P. aeruginosa-mediated vacuities and to determine its role for pancreatic involvement in cystic fibrosis.  相似文献   
46.
The physiological basis of thermoperiodic stem elongation is as yet poorly understood. Thermoperiodic control of gibberellin (GA) metabolism has been suggested as an underlying mechanism. We have investigated the influence of different day and night temperature combinations on GA levels, and diurnal steady-state expression of genes involved in GA biosynthesis (LS, LH, NA, PSGA20ox1, and PsGA3ox1) and GA deactivation (PsGA2ox1 and PsGA2ox2), and related this to diurnal stem elongation in pea (Pisum sativum L. cv Torsdag). The plants were grown under a 12-h light period with an average temperature of 17 degrees C. A day temperature/night temperature combination of 13 degrees C/21 degrees C reduced stem elongation after 12 d by 30% as compared to 21 degrees C/13 degrees C. This was correlated with a 55% reduction of GA1. Although plant height correlated with GA1 content, there was no correlation between diurnal growth rhythms and GA1 content. NA, PsGA20ox1, and PsGA2ox2 showed diurnal rhythms of expression. PsGA2ox2 was up-regulated in 13 degrees C/21 degrees C (compared to 21 degrees C/13 degrees C), at certain time points, by up to 19-fold. Relative to PsGA2ox2, the expression of LS, LH, NA, PSGA20ox1, PsGA3ox1, and PsGA2ox1 was not or only slightly affected by the different temperature treatments. The sln mutant having a nonfunctional PsGA2ox1 gene product showed the same relative stem elongation response to temperature as the wild type. This supports the importance of PsGA2ox2 in mediating thermoperiodic stem elongation responses in pea. We present evidence for an important role of GA catabolism in thermoperiodic effect on stem elongation and conclude that PsGA2ox2 is the main mediator of this effect in pea.  相似文献   
47.
48.
Tumor necrosis factor-alpha (TNF-alpha) stimulates expression of endothelial cell (EC) genes that may promote atherosclerosis in part by an activation of mitogen-activated protein (MAP) kinases. Ebselen (2-phenyl-1,2-benzisoselenazol-3[2H]-one), a selenoorganic compound, is effective for acute ischemic stroke; however, its effect on EC has not yet been elucidated. We examined the effect of ebselen on TNF-alpha-induced MAP kinase activation and adhesion molecule expression in cultured human umbilical vein endothelial cells (HUVEC). Extracellular signal-regulated kinase (ERK1/2), c-Jun N-terminal kinase (JNK) and p38 were rapidly and significantly activated by TNF-alpha in HUVEC. TNF-alpha-induced JNK activation was inhibited by ebselen, whereas ERK1/2 and p38 were not affected. Apoptosis signal-regulated kinase 1 (ASK1) was suggested to be involved in TNF-alpha-induced JNK activation because transfection of kinase-inactive ASK1 inhibited TNF-alpha-induced JNK activation. Ebselen inhibited TNF-alpha-induced TNF receptor-associated factor 2 (TRAF2)-ASK1 complex formation and phosphorylation of stress-activated protein kinase ERK kinase 1 (SEK1), which is an upstream signaling molecule of JNK. Finally, TNF-alpha-induced activator protein-1 (AP-1) and nuclear factor-kappaB (NF-kappaB) activation and resultant intracellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) expressions were inhibited by ebselen. Specific inhibitors for JNK and NF-kappaB also inhibited TNF-alpha-induced ICAM-1 and VCAM-1 expressions in HUVEC. These findings suggest that ebselen prevents TNF-alpha-induced EC activation through the inhibition of TRAF2-ASK1-SEK1 signaling pathway, which leads to JNK activation. Inhibition of JNK by ebselen may imply its usefulness for the prevention of atherosclerosis relevant to EC activation.  相似文献   
49.
Pande AH  Moe D  Nemec KN  Qin S  Tan S  Tatulian SA 《Biochemistry》2004,43(46):14653-14666
Mammalian 5-lipoxygenase (5-LO) catalyzes the conversion of arachidonic acid (AA) to leukotrienes, potent inflammatory mediators. 5-LO is activated by a Ca(2+)-mediated translocation to membranes, and demonstrates the characteristic features of interfacially activated enzymes, yet the mechanism of membrane binding of 5-LO is not well understood. In an attempt to understand the mechanism of lipid-mediated activation of 5-LO, we have studied the effects of a large set of lipids on human recombinant 5-LO activity, as well as mutual structural effects of 5-LO and membranes. In the presence of 0.35 mM phosphatidylcholine (PC) and 0.2 mM Ca(2+), there was substrate inhibition at >100 microM AA. Data analysis at low AA concentrations yielded the following: K(m) approximately 103 microM and k(cat) approximately 56 s(-1). 5-LO activity was supported by PC more than by any other lipid tested except for a cationic lipid, which was more stimulatory than PC. Binding of 5-LO to zwitterionic and acidic membranes was relatively weak; the extent of binding increased 4-8 times in the presence of Ca(2+), whereas binding to cationic membranes was stronger and essentially Ca(2+)-independent. Polarized attenuated total reflection infrared experiments implied that 5-LO binds to membranes at a defined orientation with the symmetry axis of the putative N-terminal beta-barrel tilted approximately 45 degrees from the membrane normal. Furthermore, membrane binding of 5-LO resulted in dehydration of the membrane surface and was paralleled with stabilization of the structures of both 5-LO and the membrane. Our results provide insight into the understanding of the effects of membrane surface properties on 5-LO-membrane interactions and the interfacial activation of 5-LO.  相似文献   
50.
Adenosine is an autacoid that regulates renal Na(+) transport. Activation of adenosine A(1) receptor (A(1)R) by N(6)-cyclopentidyladenosine (CPA) inhibits the Na(+)/H(+) exchanger 3 (NHE3) via phospholipase C/Ca(2+)/protein kinase C (PKC) signaling pathway. Mutation of PKC phosphorylation sites on NHE3 does not affected regulation of NHE3 by CPA, but amino acid residues 462 and 552 are essential for A(1)R-dependent control of NHE3 activity. One binding partner of the NHE family is calcineurin homologous protein (CHP). We tested the role of NHE3-CHP interaction in mediating CPA-induced inhibition of NHE3 in opossum kidney (OK) and Xenopus laevis uroepithelial (A6) cells. Both native and transfected NHE3 and CHP are present in the same immuno-complex by co-immunoprecipitation. CPA (10(-6) M) increases CHP-NHE3 interaction by 30 - 60% (native and transfected proteins). Direct CHP-NHE3 interaction is evident by yeast two-hybrid assay (bait, NHE3(C terminus); prey, CHP); the minimal interacting region is localized to the juxtamembrane region of NHE3(C terminus) (amino acids 462-552 of opossum NHE3). The yeast data were confirmed in OK cells where truncated NHE3 (NHE3(delta552)) still shows CPA-stimulated CHP interaction. Overexpression of the polypeptide from the CHP binding region (NHE3(462-552)) interferes with the ability of CPA to inhibit NHE3 activity and to increase CHPNHE3(Full-length) interaction. Reduction of native CHP expression by small interference RNA abolishes the ability of CPA to inhibit NHE3 activity. We conclude that CHPNHE3 interaction is regulated by A(1)R activation and this interaction is a necessary and integral part of the signaling pathway between adenosine and NHE3.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号