首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71篇
  免费   4篇
  2022年   1篇
  2021年   1篇
  2018年   1篇
  2017年   1篇
  2016年   3篇
  2015年   5篇
  2014年   3篇
  2013年   6篇
  2012年   7篇
  2011年   5篇
  2010年   6篇
  2009年   3篇
  2008年   7篇
  2007年   2篇
  2006年   2篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  2001年   3篇
  1999年   3篇
  1993年   2篇
  1985年   1篇
  1982年   1篇
  1979年   2篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1958年   1篇
排序方式: 共有75条查询结果,搜索用时 15 毫秒
41.
α-Synuclein becomes misfolded and aggregated upon damage by various factors, for example, by reactive oxygen species. These aggregated forms have been proposed to have differential toxicities and their interaction with mitochondria may cause dysfunction within this organelle that contributes to the pathogenesis of Parkinson''s disease (PD). In particular, the association of α-synuclein with mitochondria occurs through interaction with mitochondrial complex I and importantly defects of this protein have been linked to the pathogenesis of PD. Therefore, we investigated the relationship between aggregated α-synuclein and mitochondrial dysfunction, and the consequences of this interaction on cell survival. To do this, we studied the effects of α-synuclein on cybrid cell lines harbouring mutations in either mitochondrial complex I or IV. We found that aggregated α-synuclein inhibited mitochondrial complex I in control and complex IV-deficient cells. However, when aggregated α-synuclein was applied to complex I-deficient cells, there was no additional inhibition of mitochondrial function or increase in cell death. This would suggest that as complex I-deficient cells have already adapted to their mitochondrial defect, the subsequent toxic effects of α-synuclein are reduced.The pathological hallmark of Parkinson''s disease (PD) is the presence of α-synuclein aggregates, particularly within the substantia nigra (SN). These aggregations take the form of intracellular Lewy bodies, and also neuritic aggregations. However, both the effect of these inclusions on neuronal survival and the toxicity of different forms of α-synuclein are still debated. To aggregate α-synuclein must undergo a conformational change, however, the mechanism behind this change and subsequent aggregation in PD remains to be determined.Mutations within the α-synuclein gene (SNCA (MIM 163890)) were the first to be associated with autosomal dominant PD, while more recently genome-wide association studies have suggested that single-nucleotide polymorphisms in this gene are important for sporadic PD. A widely expressed protein α-synuclein is important for synaptic vesicle recycling and the modulation of dopamine transmission within SN neurons.1, 2, 3, 4, 5, 6, 7, 8 It interacts with curved cellular membranes including those of mitochondria suggesting a possible mode of its toxicity,9, 10, 11 and can be imported into mitochondria in an energy-dependent manner.9 The accumulation of α-synuclein within mitochondria leads to complex I impairment, decreased mitochondrial membrane potential (ΔΨm) and increased reactive oxygen species (ROS) production. The occurrence of these changes is also dependent on calcium homoeostasis.9, 12, 13Mitochondrial dysfunction has also been heavily implicated in the pathogenesis of PD. Early studies showed a decrease in mitochondrial complex I in the SN of PD patients and studies involving the inhibition of this complex replicate many of the features of this disease. In addition, SN neurons show high levels of mitochondrial DNA deletions in old age,14, 15 which lead to respiratory deficiency, and the environment of the SN is believed to be particularly oxidative due to a number of processes, including the metabolism of dopamine. More recently a number of genes known to cause autosomal recessive forms of PD have been shown to encode proteins with functions associated with mitochondrial turnover (Parkin/Pink1 (MIM 602544, MIM 608309)) or oxidative stress (DJ-1 (MIM 602533)). However, the link between these two processes and the loss of dopaminergic neurons in PD remains to be elucidated.Several hypotheses have been suggested for what might cause α-synuclein to undergo the conformational change into more aggregate prone forms, from oxidative stress to gene mutations. Furthermore, the accumulation of mitochondrial DNA (mtDNA) mutations and dysfunctional mitochondria with advancing age are likely to have an effect on oxidative stress levels within the SN, which might contribute further to the misfolding and accumulation of this protein. Numerous studies have used rotenone and other toxins to induce mitochondrial dysfunction and monitor the accumulation of α-synuclein, despite the wealth of information that these studies provide they often do not reflect the subtleties of the slow accumulation of mitochondrial dysfunction within ageing SN neurons.Therefore, we investigated the relationship between mitochondria and aggregated α-synuclein, focussing on how these forms affect neurons with and without mitochondrial dysfunction. We wanted to understand how aggregated α-synuclein impacted on the survival of cells with mitochondrial dysfunction, to enable a deeper understanding of the effect of these two processes on neuronal survival. To investigate this we used cells with mutations in and partial inhibition of complexes I and IV.  相似文献   
42.
Background  Methanogenesis by methanogenic Archaea and sulfate reduction by sulfate reducing bacteria (SRB) are the major hydrogenotrophic pathways in the human colon. Methanogenic status of mammals is suggested to be under evolutionary rather than dietary control. However, information is lacking regarding the dynamics of hydrogenotrophic microbial communities among different primate species.
Methods  Rectal swabs were collected from 10 sooty mangabeys ( Cercocebus atys ) and 10 baboons ( Papio hamadryas ). The diversity and abundance of methanogens and SRB were examined using PCR-denaturing gradient gel electrophoresis (DGGE) and real-time quantitative PCR (qPCR).
Results  The DGGE results revealed that intestinal Archaea and SRB communities differ between mangabeys and baboons. Phylogenetic analyses of Archaea DGGE bands revealed two distinct clusters with one representing a putative novel order of methanogenic Archaea. The qPCR detected a similar abundance of methanogens and SRB.
Conclusions  Intestinal Archaea and SRB coexist in these primates, and the community patterns are host species-specific.  相似文献   
43.
Anthrax lethal factor (LF) is the protease component of anthrax lethal toxin (LT). LT induces pyroptosis in macrophages of certain inbred mouse and rat strains, while macrophages from other inbred strains are resistant to the toxin. In rats, the sensitivity of macrophages to toxin-induced cell death is determined by the presence of an LF cleavage sequence in the inflammasome sensor Nlrp1. LF cleaves rat Nlrp1 of toxin-sensitive macrophages, activating caspase-1 and inducing cell death. Toxin-resistant macrophages, however, express Nlrp1 proteins which do not harbor the LF cleavage site. We report here that mouse Nlrp1b proteins are also cleaved by LF. In contrast to the situation in rats, sensitivity and resistance of Balb/cJ and NOD/LtJ macrophages does not correlate to the susceptibility of their Nlrp1b proteins to cleavage by LF, as both proteins are cleaved. Two LF cleavage sites, at residues 38 and 44, were identified in mouse Nlrp1b. Our results suggest that the resistance of NOD/LtJ macrophages to LT, and the inability of the Nlrp1b protein expressed in these cells to be activated by the toxin are likely due to polymorphisms other than those at the LF cleavage sites.  相似文献   
44.
ABSTRACT: BACKGROUND: End-stage renal disease (ESRD) patients treated with renal replacement therapy (RRT) have premature immunologically aged T cells which may underlie uremia-associated immune dysfunction. The aim of this study was to investigate whether uremia was able to induce premature ageing of the T cell compartment. For this purpose, we examined the degree of premature immunological T cell ageing by examining the T cell differentiation status, thymic output via T cell receptor excision circle (TREC) content and proliferative history via relative telomere length in ESRD patients not on RRT. RESULTS: Compared to healthy controls, these patients already had a lower TREC content and an increased T cell differentiation accompanied by shorter telomeres. RRT was able to enhance CD8+ T cell differentiation and to reduce CD8+ T cell telomere length in young dialysis patients. An increased differentiation status of memory CD4+ T cells was also noted in young dialysis patients. CONCLUSION: Based on these results we can conclude that uremia already causes premature immunological ageing of the T cell system and RRT further increases immunological ageing of the CD8+ T cell compartment in particular in young ESRD patients.  相似文献   
45.
Disturbances in the schedules of gene expression in developing interspecific fish hybrids have been used to draw inferences about the extent of gene regulatory divergence between species and about the degree to which this gene regulatory divergence is correlated with structural gene divergence, as estimated by genetic distance. Sperm from each of 10 different species representing six genera within the family Centrarchidae was used to fertilize eggs of the Florida largemouth bass (Micropterus salmoides floridanus). The genetic distances (D; Nei 1978) between the parental species used to form the hybrids ranged from 0.133 to 0.974. The developmental success and temporal patterns of gene expression of each of the hybrids were compared with those of the Florida largemouth bass. As the genetic distance between the paternal species and the Florida largemouth bass increased, there was a general decline in developmental success in the hybrid embryos as demonstrated by the observed reductions in the percentage of hatching and by progressively earlier and more extensive morphological abnormalities. Concomitantly, progressively more marked alterations in developmental schedules of expression of 15 enzyme loci occurred in the hybrids as the genetic distance between parental species increased. However, observed deviations from this trend for a few species may represent an uncoupling of the rates and modes of evolution of structural genes from those for genes regulating developmental processes.   相似文献   
46.
Microsomal fractions from wheat (Triticum vulgare) and oat (Avena sativa) roots were used to study Mg2+ and Ca2+ activated adenosine triphosphatases, their dependence of pH, and how Mg2+ and Ca2+ compete or add in stimulation and inhibition. Wheat gives a high proportion of Ca2+ stimulated ATPase. Less effect is obtained with Mg2+. The characteristics of oar ATPase are the reverse. The ATPase from the wheat roots depends on the mineral nutrition. A kinetïc analysis shows one site, where Mg2+ and Ca2+ at low concentrations (or complexes between the di-valents and ATP) cooperate in the activation of the ATPase. The action of this site is more dearly expressed at pH 6.0 than at 6.8, and more clearly in the preparations from low salt roots than in those from high salt conditions. In another site, which is particularly evident in preparations from high salt roots tested at pH 6.8, high concentrations of Mg2+ inhibit the ATPase; this inhibition is competitively relieved by Ca2+. The specific activity of the ATPase from high salt roots of wheat is higher than that from low salt roots, although the amount of protein of the fraction studied remains the same, when calculated per g fresh weight of the roots.  相似文献   
47.
The purpose of this study was to investigate the association between physical fitness and mild cognitive impairment (MCI) in elderly Koreans. This was a cross-sectional study that involved 134 men and 299 women aged 65 to 88 years. Six senior fitness tests were used as independent variables: 30 s chair stand for lower body strength, arm curl for upper body strength, chair-sit-and-reach for lower body flexibility, back scratch for upper body flexibility, 8-ft up-and-go for agility/dynamic balance, and 2-min walk for aerobic endurance. Global cognitive function was assessed using the Korean version of the Mini-Mental State Examination (MMSE). Potential covariates such as age, education levels, blood lipids, and insulin resistance (IR) markers were also assessed. Compared to individuals without MMSE-based MCI, individuals with MMSE-based MCI had poor physical fitness based on the senior fitness test (SFT). There were significant positive trends observed for education level (p=0.001) and MMSE score (p<0.001) across incremental levels of physical fitness in this study population. Individuals with moderate (OR=0.341, p=0.006) and high (OR=0.271, p=0.007) physical fitness based on a composite score of the SFT measures were less likely to have MMSE-based MCI than individuals with low physical fitness (referent, OR=1). The strength of the association between moderate (OR=0.377, p=0.038) or high (OR=0.282, p=0.050) physical fitness and MMSE-based MCI was somewhat attenuated but remained statistically significant even after adjustment for the measured compounding factors. We found that poor physical fitness was independently associated with MMSE-based MCI in elderly Koreans.  相似文献   
48.
49.
Anthrax lethal toxin (LT) is cytotoxic to macrophages from certain inbred mouse strains. The gene controlling macrophage susceptibility to LT is Nalp1b . Nalp1b forms part of the inflammasome, a multiprotein complex involved in caspase-1 activation and release of interleukin (IL)-1β and IL-18. We confirm the role of caspase-1 in LT-mediated death by showing that caspase inhibitors differentially protected cells against LT, with the degree of protection corresponding to each compound's ability to inhibit caspase-1. Caspase-1 activation and cytokine processing and release were late events inhibited by elevated levels of KCl and sucrose, by potassium channel blockers, and by proteasome inhibitors, suggesting that inflammasome formation requires a protein-degradation event and occurs downstream of LT-mediated potassium efflux. In addition, IL-18 and IL-1β release was dependent on cell death, indicating that caspase-1-mediated cytotoxicity is independent of these cytokines. Finally, inducing NALP3-inflammasome formation in LT-resistant macrophages did not sensitize cells to LT, suggesting that general caspase-1 activation cannot account for sensitivity to LT and that a Nalp1b-mediated event is specifically required for death. Our data indicate that inflammasome formation is a contributing, but not initiating, event in LT-mediated cytotoxicity and that earlier LT-mediated events leading to ion fluxes are required for death.  相似文献   
50.
Macrophages from certain inbred mouse strains are rapidly killed (< 90 min) by anthrax lethal toxin (LT). LT cleaves cytoplasmic MEK proteins at 20 min and induces caspase-1 activation in sensitive macrophages at 50-60 min, but the mechanism of LT-induced death is unknown. Proteasome inhibitors block LT-mediated caspase-1 activation and can protect against cell death, indicating that the degradation of at least one cellular protein is required for LT-mediated cell death. Proteins can be degraded by the proteasome via the N-end rule, in which a protein's stability is determined by its N-terminal residue. Using amino acid derivatives that act as inhibitors of this pathway, we show that the N-end rule is required for LT-mediated caspase-1 activation and cell death. We also found that bestatin methyl ester, an aminopeptidase inhibitor protects against LT in vitro and in vivo and that the different inhibitors of the protein degradation pathway act synergistically in protecting against LT. We identify c-IAP1, a mammalian member of the inhibitor of apoptosis protein (IAP) family, as a novel N-end rule substrate degraded in macrophages treated with LT. We also show that LT-induced c-IAP1 degradation is independent of the IAP-antagonizing proteins Smac/DIABLO and Omi/HtrA2, but dependent on caspases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号