首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3178篇
  免费   238篇
  国内免费   331篇
  3747篇
  2024年   17篇
  2023年   54篇
  2022年   117篇
  2021年   184篇
  2020年   145篇
  2019年   149篇
  2018年   131篇
  2017年   111篇
  2016年   149篇
  2015年   212篇
  2014年   198篇
  2013年   268篇
  2012年   305篇
  2011年   260篇
  2010年   168篇
  2009年   133篇
  2008年   157篇
  2007年   129篇
  2006年   126篇
  2005年   91篇
  2004年   84篇
  2003年   72篇
  2002年   77篇
  2001年   43篇
  2000年   42篇
  1999年   37篇
  1998年   22篇
  1997年   30篇
  1996年   25篇
  1995年   22篇
  1994年   12篇
  1993年   16篇
  1992年   28篇
  1991年   19篇
  1990年   16篇
  1989年   11篇
  1988年   13篇
  1987年   11篇
  1986年   12篇
  1985年   5篇
  1984年   4篇
  1983年   5篇
  1982年   4篇
  1980年   5篇
  1975年   4篇
  1973年   4篇
  1971年   3篇
  1969年   3篇
  1968年   2篇
  1967年   2篇
排序方式: 共有3747条查询结果,搜索用时 15 毫秒
121.

Background and Aims

Estimates of biochar residence times in soils range over three orders of magnitude. We present the first direct comparison between the biodegradation of a char from hydrothermal carbonization (htcBC) and pyrolysis (pyrBC) with high temporal resolution.

Methods

Mineralization of the biochars and their shared Miscanthus feedstock in three soils was determined directly by the 13CO2 efflux using a novel method incorporating wavelength scanned cavity ring-down spectroscopy. Biochar half-life (t1/2) was estimated with three empirical models.

Results

(1) The htcBC was readily biodegradable, whereas pyrBC was more recalcitrant. (2) Cumulative degradation of both biochars increased with soil organic carbon and nitrogen content. (3) The corrected Akaike information criterion (AICC) showed an overall preference for the double exponential model (DEM) reflecting a labile and a recalcitrant C-pool, over the first-order degradation model (FODM) and a logarithmic model. (4) The DEM resulted in t1/2 ranging from 19.7–44.5, 0.7–2.1 and 0.8–1.3 years for pyrBC, htcBC and feedstock, respectively.

Conclusion

The degradation was rather similar between feedstock and htcBC but one order of magnitude slower for pyrBC. The AICC preferred FODM in two cases, where the DEM parameters indicated no distinction between a labile and recalcitrant carbon pool.  相似文献   
122.
Coniothyrium minitans is a sclerotial parasite of the plant-pathogenic fungus Sclerotinia sclerotiorum, and conidial production and parasitism are two important aspects for commercialization of this biological control agent. To understand the mechanism of conidiation and parasitism at the molecular level, we constructed a transfer DNA (tDNA) insertional library with the wild-type strain ZS-1. A conidiation-deficient mutant, ZS-1TN22803, was uncovered through screening of this library. This mutant could produce pycnidia on potato dextrose agar (PDA), but most were immature and did not bear conidia. Moreover, this mutant lost the ability to parasitize or rot the sclerotia of S. sclerotiorum. Analysis of the tDNA flanking sequences revealed that a peroxisome biogenesis factor 6 (PEX6) homolog of Saccharomyces cerevisiae, named CmPEX6, was disrupted by the tDNA insertion in this mutant. Targeted gene replacement and gene complementation tests confirmed that a null mutation of CmPEX6 was responsible for the phenotype of ZS-1TN22803. Further analysis showed that both ZS-1TN22803 and the targeted replacement mutants could not grow on PDA medium containing oleic acid, and they produced much less nitric oxide (NO) and hydrogen peroxide (H2O2) than wild-type strain ZS-1. The conidiation of ZS-1TN22803 was partially restored by adding acetyl-CoA or glyoxylic acid to the growth media. Our results suggest that fatty acid β-oxidation, reactive oxygen and nitrogen species, and possibly other unknown pathways in peroxisomes are involved in conidiation and parasitism by C. minitans.  相似文献   
123.
124.
125.
Geranylgeranyltransferase I (GGT) is a prenyltransferase that mediates lipid modification of Rho small GTPases, such as Rho, Rac, and Cdc42, which are important for neuronal synaptogenesis. Although GGT is expressed in brain extensively, the function of GGT in central nerves system is largely unknown so far. We have previously demonstrated that GGT promotes the basal and neuronal activity and brain‐derived neurotrophic factor (BDNF)‐induced dendritic morphogenesis of cultured hippocampal neurons and cerebellar slices. This study is to explore the function and mechanism of GGT in neuronal synaptogenesis. We found that the protein level and activity of GGT gradually increased in rat hippocampus from P7 to P28 and subcellular located at synapse of neurons. The linear density of Synapsin 1 and post‐synaptic density protein 95 increased by over‐expression of GGT β, while reduced by inhibition or down‐regulation of GGT. In addition, GGT and its known substrate Rac was activated by BDNF, which promotes synaptogenesis in cultured hippocampal neurons. Furthermore, BDNF‐induced synaptogenesis was eliminated by GGT inhibition or down‐regulation, as well as by non‐prenylated Rac1 over‐expression. Together, our data suggested that GGT mediates BDNF‐induced neuronal synaptogenesis through Rac1 activation.  相似文献   
126.
127.
128.
κ-Carrageenases exhibit apparent distinctions in gene sequence, molecular weight, enzyme properties, and posttranslational processes. In this study, a new κ-carrageenase gene named cgkZ was cloned from the marine bacterium Zobellia sp. ZM-2. The gene comprised an open reading frame of 1,638 bp and encoded 545 amino acids. The natural signal peptide of κ-carrageenase was used successfully for the secretory production of the recombinant enzyme in Escherichia coli. A posttranslational process that removes an amino acid sequence of about 20 kDa from the C-terminal end of κ-carrageenase was first discovered in E. coli. An increase in enzyme activity by 167.3 % in the presence of 5 mM DTT was discovered, and Na+ at a certain concentration range was positively correlated with enzyme activity. The κ-carrageenase production of E. coli was 9.0 times higher than that of ZM-2. These results indicate the potential use of the enzyme in the biotechnological industry.  相似文献   
129.
Identification and molecular characterization of Babesia gibsoni proteins with potential antigenic properties are crucial for the development and validation of the serodiagnostic method. In this study, we isolated a cDNA clone encoding a novel B. gibsoni 76-kDa protein by immunoscreening of the parasite cDNA library. Computer analysis revealed that the protein presents a glutamic acid-rich region in the C-terminal. Therefore, the protein was designated as B. gibsoni glutamic acid-rich protein (BgGARP). A BLASTp analysis of a translated BgGARP polypeptide demonstrated that the peptide shared a significant homology with a 200-kDa protein of Babesia bigemina and Babesia bovis. A truncated BgGARP cDNA (BgGARPt) encoding a predicted 13-kDa peptide was expressed in Escherichia coli (E. coli), and mouse antisera against the recombinant protein were used to characterize a corresponding native protein. The antiserum against recombinant BgGARPt (rBgGARPt) recognized a 140-kDa protein in the lysate of infected erythrocytes, which was detectable in the cytoplasm of the parasites by confocal microscopic observation. In addition, the specificity and sensitivity of enzyme-linked immunosorbent assay (ELISA) with rBgGARPt were evaluated using B. gibsoni-infected dog sera and specific pathogen-free (SPF) dog sera. Moreover, 107 serum samples from dogs clinically diagnosed with babesiosis were examined using ELISA with rBgGARPt. The results showed that 86 (80.4%) samples were positive by rBgGARPt-ELISA, which was comparable to IFAT and PCR as reference test. Taken together, these results demonstrate that BgGARP is a suitable serodiagnostic antigen for detecting antibodies against B. gibsoni in dogs.  相似文献   
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号