首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3195篇
  免费   203篇
  2022年   21篇
  2021年   27篇
  2020年   17篇
  2019年   19篇
  2018年   29篇
  2017年   20篇
  2016年   42篇
  2015年   82篇
  2014年   88篇
  2013年   158篇
  2012年   161篇
  2011年   156篇
  2010年   93篇
  2009年   99篇
  2008年   175篇
  2007年   172篇
  2006年   137篇
  2005年   168篇
  2004年   173篇
  2003年   182篇
  2002年   157篇
  2001年   96篇
  2000年   79篇
  1999年   78篇
  1998年   51篇
  1997年   44篇
  1996年   25篇
  1995年   32篇
  1994年   25篇
  1993年   32篇
  1992年   73篇
  1991年   49篇
  1990年   55篇
  1989年   66篇
  1988年   49篇
  1987年   44篇
  1986年   35篇
  1985年   42篇
  1984年   30篇
  1983年   16篇
  1982年   21篇
  1981年   21篇
  1979年   21篇
  1978年   16篇
  1974年   18篇
  1973年   25篇
  1971年   16篇
  1968年   18篇
  1967年   20篇
  1966年   17篇
排序方式: 共有3398条查询结果,搜索用时 15 毫秒
121.
122.
123.
In most dicotyledonous plants, leaf pavement cells exhibit complex jigsaw puzzle-like cell morphogenesis during leaf expansion. Although detailed molecular biological information and mathematical modeling of this jigsaw puzzle-like cell morphogenesis are now available, a full understanding of this process remains elusive. Recent reports have highlighted the importance of three-dimensional (3D) structures (i.e., anticlinal and periclinal cell wall) in understanding the mechanical models that describe this morphogenetic process. We believe that it is important to acquire 3D shapes of pavement cells over time, i.e., acquire and analyze four-dimensional (4D) information when studying the relationship between mechanical modeling and simulations and the actual cell shape. In this report, we have developed a framework to capture and analyze 4D morphological information of Arabidopsis thaliana cotyledon pavement cells by using both direct water immersion observations and computational image analyses, including segmentation, surface modeling, virtual reality and morphometry. The 4D cell models allowed us to perform time-lapse 3D morphometrical analysis, providing detailed quantitative information about changes in cell growth rate and shape, with cellular complexity observed to increase during cell growth. The framework should enable analysis of various phenotypes (e.g., mutants) in greater detail, especially in the 3D deformation of the cotyledon surface, and evaluation of theoretical models that describe pavement cell morphogenesis using computational simulations. Additionally, our accurate and high-throughput acquisition of growing cell structures should be suitable for use in generating in silico model cell structures.  相似文献   
124.
Journal of Plant Research - Cysteine biosynthesis is directed by the successive commitments of serine acetyltransferase, and O-acetylserine (thiol) lyase (OASTL) compounds, which subsequently frame...  相似文献   
125.
126.
Most α-synuclein (α-syn) deposited in Lewy bodies, the pathological hallmark of Parkinson disease (PD), is phosphorylated at Ser-129. However, the physiological and pathological roles of this modification are unclear. Here we investigate the effects of Ser-129 phosphorylation on dopamine (DA) uptake in dopaminergic SH-SY5Y cells expressing α-syn. Subcellular fractionation of small interfering RNA (siRNA)–treated cells shows that G protein–coupled receptor kinase 3 (GRK3), GRK5, GRK6, and casein kinase 2 (CK2) contribute to Ser-129 phosphorylation of membrane-associated α-syn, whereas cytosolic α-syn is phosphorylated exclusively by CK2. Expression of wild-type α-syn increases DA uptake, and this effect is diminished by introducing the S129A mutation into α-syn. However, wild-type and S129A α-syn equally increase the cell surface expression of dopamine transporter (DAT) in SH-SY5Y cells and nonneuronal HEK293 cells. In addition, siRNA-mediated knockdown of GRK5 or GRK6 significantly attenuates DA uptake without altering DAT cell surface expression, whereas knockdown of CK2 has no effect on uptake. Taken together, our results demonstrate that membrane-associated α-syn enhances DA uptake capacity of DAT by GRKs-mediated Ser-129 phosphorylation, suggesting that α-syn modulates intracellular DA levels with no functional redundancy in Ser-129 phosphorylation between GRKs and CK2.  相似文献   
127.
Photosensitizers newly developed for photodynamic therapy of cancer need to be assessed using accurate methods of measuring reactive oxygen species (ROS). Little is known about the characteristics of the reaction of singlet oxygen (1O2) with spin traps, although this knowledge is necessary in electron spin resonance (ESR)/spin trapping. In the present study, we examined the effect of various reductants usually present in biological samples on the reaction of 1O2 with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO). The ESR signal of the hydroxyl radical (?OH) adduct of DMPO (DMPO-OH) resulting from 1O2-dependent generation of ?OH strengthened remarkably in the presence of reduced glutathione (GSH), 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox), ascorbic acid, NADPH, etc. A similar increase was observed in the photosensitization of uroporphyrin (UP), rose bengal (RB) or methylene blue (MB). Use of 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline-N-oxide (DEPMPO) as a spin trap significantly lessened the production of its ?OH adduct (DEPMPO-OH) in the presence of the reductants. The addition of DMPO to the DEPMPO-spin trapping system remarkably increased the signal intensity of DEPMPO-OH. DMPO-mediated generation of ?OH was also confirmed utilizing the hydroxylation of salicylic acid (SA). These results suggest that biological reductants enhance the ESR signal of DMPO-OH produced by DMPO-mediated generation of ?OH from 1O2, and that spin trap-mediated ?OH generation hardly occurs with DEPMPO.  相似文献   
128.
Background aimsOne goal of periodontal therapy is to regenerate periodontal tissues. Stem cells, growth factors and scaffolds and biomaterials are vital for the restoration of the architecture and function of complex tissues. Adipose tissue-derived stem cells (ASCs) are an ideal population of stem cells for practical regenerative medicine. In addition, platelet-rich plasma (PRP) can be useful for its ability to stimulate tissue regeneration. PRP contains various growth factors and may be useful as a cell carrier in stem cell therapies. The purpose of this study was to determine whether a mixture of ASCs and PRP promoted periodontal tissue regeneration in a canine model.MethodsAutologous ASCs and PRP were implanted into areas with periodontal tissue defects. Periodontal tissue defects that received PRP alone or non-implantation were also examined. Histologic, immunohistologic and x-ray studies were performed 1 or 2 months after implantation. The amount of newly formed bone and the scale of newly formed cementum in the region of the periodontal tissue defect were analyzed on tissue sections.ResultsThe areas of newly formed bone and cementum were greater 2 months after implantation of ASCs and PRP than at 1 month after implantation, and the radiopacity in the region of the periodontal tissue defect increased markedly by 2 months after implantation. The ASCs and PRP group exhibited periodontal tissue with the correct architecture, including alveolar bone, cementum-like structures and periodontal ligament-like structures, by 2 months after implantation.ConclusionsThese findings suggest that a combination of autologous ASCs and PRP promotes periodontal tissue regeneration that develops the appropriate architecture for this complex tissue.  相似文献   
129.
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号