首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   632篇
  免费   29篇
  2023年   2篇
  2022年   14篇
  2021年   8篇
  2020年   8篇
  2019年   8篇
  2018年   23篇
  2017年   11篇
  2016年   21篇
  2015年   27篇
  2014年   21篇
  2013年   27篇
  2012年   50篇
  2011年   38篇
  2010年   26篇
  2009年   16篇
  2008年   35篇
  2007年   18篇
  2006年   29篇
  2005年   31篇
  2004年   34篇
  2003年   24篇
  2002年   20篇
  2001年   15篇
  2000年   29篇
  1999年   19篇
  1998年   8篇
  1997年   2篇
  1996年   4篇
  1995年   3篇
  1994年   3篇
  1993年   2篇
  1992年   13篇
  1991年   2篇
  1990年   7篇
  1989年   6篇
  1988年   3篇
  1987年   5篇
  1986年   8篇
  1985年   5篇
  1984年   7篇
  1982年   3篇
  1980年   2篇
  1977年   4篇
  1976年   3篇
  1975年   2篇
  1974年   4篇
  1973年   2篇
  1972年   4篇
  1970年   1篇
  1968年   1篇
排序方式: 共有661条查询结果,搜索用时 15 毫秒
81.
Oxidative base lesions, such as 8-oxoguanine (8-oxoG), accumulate in nuclear and mitochondrial DNAs under oxidative stress, resulting in cell death. However, it is not known which form of DNA is involved, whether nuclear or mitochondrial, nor is it known how the death order is executed. We established cells which selectively accumulate 8-oxoG in either type of DNA by expression of a nuclear or mitochondrial form of human 8-oxoG DNA glycosylase in OGG1-null mouse cells. The accumulation of 8-oxoG in nuclear DNA caused poly-ADP-ribose polymerase (PARP)-dependent nuclear translocation of apoptosis-inducing factor, whereas that in mitochondrial DNA caused mitochondrial dysfunction and Ca2+ release, thereby activating calpain. Both cell deaths were triggered by single-strand breaks (SSBs) that had accumulated in the respective DNAs, and were suppressed by knockdown of adenine DNA glycosylase encoded by MutY homolog, thus indicating that excision of adenine opposite 8-oxoG lead to the accumulation of SSBs in each type of DNA. SSBs in nuclear DNA activated PARP, whereas those in mitochondrial DNA caused their depletion, thereby initiating the two distinct pathways of cell death.  相似文献   
82.
Human MutT homolog (hMTH1) hydrolyzes oxidized purine nucleoside triphosphates to monophosphates, thereby avoiding incorporation of such oxidized purines into DNA or RNA. We examined whether hMTH1 prevents cellular dysfunction induced by sodium nitroprusside, a spontaneous NO donor. Exposure to sodium nitroprusside caused an 8-oxoguanine (8-oxoG) buildup in DNA of proliferating MTH1-null cells which underwent mitochondrial degeneration and subsequently died. Quiescent MTH1-null cells also died with 8-oxoG buildup but only when the buildup affected mitochondrial and not nuclear DNA. In both proliferative and quiescent conditions, the accumulation of 8-oxoG in DNA and cell death was effectively prevented by hMTH1. Knockdown of MUTYH in quiescent MTH1-null cells significantly prevented the cell death, suggesting that 8-oxoG incorporated into mitochondrial DNA is a main cause of this form of cell death. To verify this possibility, an artificially modified hMTH1, namely mTP-EGFP-hMTH1, which localizes exclusively in mitochondria, was expressed in MTH1-null cells. mTP-EGFP-hMTH1 selectively prevented buildup of 8-oxoG in mitochondrial but not nuclear DNA after exposure of proliferating cells to sodium nitroprusside, and also efficiently prevented cell death. We thus concluded that exposure of cells to sodium nitroprusside causes oxidation of mitochondrial deoxynucleotide pools, and that buildup of oxidized bases in mitochondrial DNA initiates cell death.  相似文献   
83.
84.
Vitamin C (VC) has a strong antioxidant function evident as its ability to scavenge superoxide radicals in vitro. We verified that this property actually exists in vivo by using a real-time imaging system in which Lucigenin is the chemiluminescent probe for detecting superoxide in senescence marker protein-30 (SMP30)/gluconolactonase (GNL) knockout (KO) mice, which cannot synthesize VC in vivo. SMP30/GNL KO mice were given 1.5 g/L VC [VC(+)] for 2, 4, or 8 weeks or denied VC [VC(−)]. At 4 and 8 weeks, VC levels in brains from VC(−) KO mice were <6% of that in VC(+) KO mice. Accordingly, superoxide-dependent chemiluminescence levels determined by ischemia-reperfusion at the 4- and 8 weeks test intervals were 3.0-fold and 2.1-fold higher, respectively, in VC(−) KO mice than in VC(+) KO mice. However, total superoxide dismutase activity and protein levels were not altered. Thus, VC depletion specifically increased superoxide generation in a model of the living brain.  相似文献   
85.
BCR/ABL tyrosine kinase generated from the chromosomal translocation t(9;22) causes chronic myelogenous leukemia and acute lymphoblastic leukemia. To examine the roles of BCR/ABL-activated individual signaling molecules and their cooperation in leukemogenesis, we inducibly expressed a dominant negative (DN) form of Ras, phosphatidylinositol 3-kinase, and STAT5 alone or in combination in p210 BCR/ABL-positive K562 cells. The inducibly expressed DN Ras (N17), STAT5 (694F), and DN phosphatidylinositol 3-kinase (Delta p85) inhibited the growth by 90, 55, and 40%, respectively. During the growth inhibition, the expression of cyclin D2 and cyclin D3 was suppressed by N17, 694F, or Delta p85; that of cyclin E by N17; and that of cyclin A by Delta p85. In addition, N17 induced apoptosis in a small proportion of K562, whereas 694F and Delta p85 were hardly effective. In contrast, coexpression of two DN mutants in any combinations induced severe apoptosis. During these cultures, the expression of Bcl-2 was suppressed by N17, 694F, or Delta p85, and that of Bcl-XL by N17. Furthermore, although K562 was resistant to interferon-alpha- and dexamethasone-induced apoptosis, disruption of one pathway by N17, 694F, or Delta p85 sensitized K562 to these reagents. These results suggested that cooperation among these molecules is required for full leukemogenic activities of BCR/ABL.  相似文献   
86.
87.
Recombinant human tumor necrosis factor (TNF) depressed the activities of both lipoprotein lipase (LPL) and hormone sensitive lipase (HSL) in 3T3-L1 adipocytes, 3 to 24 h after its introduction to the cells. HSL gene expression, as measured by Northern blotting analysis with 32P-labeled cloned HSL-cDNA, was also suppressed. These results suggested that the reduction in HSL activity caused by TNF resulted from inhibited gene expression of the enzyme.  相似文献   
88.
We previously designed and synthesized a series of histamine analogues with an imidazolylcyclopropane scaffold and identified potent non-selective antagonists for histamine H3 and H4 receptor subtypes. In this study, to develop H4 selective ligands, we newly designed and synthesized cyclopropane-based derivatives having an indole, benzimidazole, or piperazine structure, which are components of representative H4 selective antagonists such as JNJ7777120 and JNJ10191584. Among the synthesized derivatives, imidazolylcyclopropanes 12 and 13 conjugated with a benzimidazole showed binding affinity to the H3 and H4 receptors comparable to that of a well-known non-selective H3/H4 antagonist, thioperamide. These results suggest that the binding modes of the cyclopropane-based H3/H4 ligands in the H4 receptor can be different from those of the indole/benzimidazole-piperazine derivatives.  相似文献   
89.
Sclerotinia sclerotiorum is an important plant pathogen with worldwide distribution that causes severe economic losses of various agricultural crops such as soybean. This fungus is normally controlled with synthetic chemical fungicides that pose risks to the environment, and can be harmful to human health, and they can also induce resistance in pests. The aim of this study was to investigate the potential of Trichoderma asperelloides as a biocontrol agent towards white mold disease on soybeans crops. The antagonism of two strains of T. asperelloides (T25 and T42) isolated from soil samples was determined in-vitro by dual-culture confrontation testing on nine S. sclerotiorum strains obtained from sclerotia collected on diseased soybean plants. The mycelial growth and inhibition of carpogenic and ascospore germination by T. asperelloides extracts, as well as the efficacy of these on white mold control in soybeans were evaluated. Both strains of T. asperelloides exhibited high potential of antagonism. Methanolic and ethyl acetate extracts of the two T. asperelloides strains showed excellent growth inhibition (60–100%) on all of the pathogens tested. The ethyl acetate extracts of both T. asperelloides strains exhibited the highest efficacy against carpogenic germination, decreasing by 20–30% the number of ascospores per apothecium. Strains of T. asperelloides tested were more efficient in controlling white mold than two commercial products made from Trichoderma harzianum. The new strains of T. asperelloides have potential for successful biological control of white mold disease of soybean crops in the field.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号