首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   409篇
  免费   24篇
  433篇
  2022年   2篇
  2021年   4篇
  2020年   2篇
  2018年   3篇
  2017年   6篇
  2016年   5篇
  2015年   14篇
  2014年   8篇
  2013年   19篇
  2012年   18篇
  2011年   22篇
  2010年   12篇
  2009年   16篇
  2008年   25篇
  2007年   23篇
  2006年   21篇
  2005年   22篇
  2004年   20篇
  2003年   29篇
  2002年   18篇
  2001年   21篇
  2000年   10篇
  1999年   17篇
  1998年   3篇
  1997年   2篇
  1996年   3篇
  1995年   3篇
  1994年   3篇
  1992年   10篇
  1991年   10篇
  1990年   7篇
  1989年   3篇
  1988年   8篇
  1987年   7篇
  1986年   7篇
  1985年   1篇
  1984年   5篇
  1983年   3篇
  1982年   2篇
  1981年   2篇
  1979年   3篇
  1978年   1篇
  1976年   1篇
  1974年   5篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
  1965年   1篇
  1963年   1篇
排序方式: 共有433条查询结果,搜索用时 0 毫秒
61.
Type I interferon (IFN)-induced antitumor action is due in part to apoptosis, but the molecular mechanisms underlying IFN-induced apoptosis remain largely unresolved. In the present study, we demonstrate that IFN-beta induced apoptosis and the loss of mitochondrial membrane potential (delta psi m) in the murine CH31 B lymphoma cell line, and this was accompanied by the up-regulation of CD95, but not CD95-ligand (CD95-L), tumor necrosis factor (TNF), or TNF-related apoptosis-inducing ligand (TRAIL). Pretreatment with anti-CD95-L mAb partially prevented the IFN-beta-induced loss of delta psi m, suggesting that the interaction of IFN-beta-up-regulated CD95 with CD95-L plays a crucial role in the induction of fratricide. IFN-beta induced a sustained activation of c-Jun NH2-terminal kinase 1 (JNK1), but not extracellular signal-regulated kinases (ERKs). The IFN-beta-induced apoptosis and loss of delta psi m were substantially compromised in cells overexpressing a dominant-negative form of JNK1 (dnJNK1), and it was slightly enhanced in cells carrying a constitutively active JNK construct, MKK7-JNK1 fusion protein. The IFN-beta-induced up-regulation of CD95 together with caspase-8 activation was also abrogated in the dnJNK1 cells while it was further enhanced in the MKK7-JNK1 cells. The levels of cellular FLIP (c-FLIP), competitively interacting with caspase-8, were down-regulated by stimulation with IFN-beta but were reversed by the proteasome inhibitor lactacystin. Collectively, the IFN-beta-induced sustained activation of JNK mediates apoptosis, at least in part, through up-regulation of CD95 protein in combination with down-regulation of c-FLIP protein.  相似文献   
62.
Interferon alpha (IFN-alpha) inhibits growth, at least in part, through induction of apoptosis. However, the molecular mechanisms underlying IFN-alpha-induced apoptosis are not completely understood. In the present study, we found that IFN-alpha induced a sustained activation of c-Jun N-terminal kinase 1 (JNK1), but not extracellular kinases (ERKs), in Daudi B lymphoma cells, as assessed by Western blotting using phospho-specific antibodies. Several lines of evidence support the notion that the IFN-alpha-induced activation of JNK is responsible for IFN-alpha-induced apoptosis, at least in part, through upregulation of TNF-related apoptosis-inducing ligand (TRAIL). First, pretreatment of Daudi cells with a JNK inhibitor reduced IFN-alpha-induced upregulation of TRAIL and loss of mitochondrial membrane potential (DeltaPsim) and annexin-positive cells, which was assessed by flow cytometry. Second, a dominant-negative form of JNK1 (dnJNK1) also reduced these apoptotic events, while a constitutively active form of JNK1, MKK7-JNK1beta, enhanced them. Finally, treatment with IFN-alpha enhanced the promoter activity of the TRAIL gene, which was partially abrogated by either JNK inhibitor or dnJNK1, while it was moderately enhanced by MKK7-JNK1beta. These findings are useful for understanding molecular mechanisms of IFN-alpha-induced apoptosis and also for development of treatment modalities of some tumors with IFN-alpha.  相似文献   
63.
During injury or trauma, blood coagulation is initiated by the interaction of factor VIIa (FVIIa) in the blood with freshly exposed tissue factor (TF) to form the TF.FVIIa complex. However, unwanted clot formation can lead to death and debilitation due to vascular occlusion, and hence, anticoagulants are important for the treatment of thromboembolic disorders. Here, we report the isolation and characterization of two synergistically acting anticoagulant proteins, hemextins A and B, from the venom of Hemachatus haemachatus (African Ringhals cobra). N-terminal sequences and CD spectra of the native proteins indicate that these proteins belong to the three-finger toxin family. Hemextin A (but not hemextin B) exhibits mild anticoagulant activity. However, hemextin B forms a complex (hemextin AB complex) with hemextin A and synergistically enhances its anticoagulant potency. Prothrombin time assay showed that these two proteins form a 1:1 complex. Complex formation was supported by size-exclusion chromatography. Using a "dissection approach," we determined that hemextin A and the hemextin AB complex prolong clotting by inhibiting TF.FVIIa activity. The site of anticoagulant effects was supported by their inhibitory effect on the reconstituted TF.FVIIa complex. Furthermore, we demonstrated their specificity of inhibition by studying their effects on 12 serine proteases; the hemextin AB complex potently inhibited the amidolytic activity of FVIIa in the presence and absence of soluble TF. Kinetic studies showed that the hemextin AB complex is a noncompetitive inhibitor of soluble TF.FVIIa amidolytic activity, with a Ki of 50 nm. Isothermal titration calorimetric studies showed that the hemextin AB complex binds directly to FVIIa with a binding constant of 1.62 x 10(5) m(-1). The hemextin AB complex is the first reported natural inhibitor of FVIIa that does not require a scaffold to mediate its inhibitory activity. Molecular interactions of the hemextin AB complex with FVIIa/TF.FVIIa will provide a new paradigm in the search for anticoagulants that inhibit the initiation of blood coagulation.  相似文献   
64.
Peroxisome proliferator-activated receptor γ (PPARγ) plays a central role in adipocyte differentiation and insulin sensitivity. Although PPARγ also appears to regulate diverse cellular processes in other cell types such as lymphocytes, the detailed mechanisms remain unclear. In this study, we established a lentivirus-mediated short hairpin RNA expression system and identified a potent short hairpin RNA which suppresses PPARγ expression, resulting in marked inhibition of preadipocyte-to-adipocyte differentiation in 3T3-L1 cells. Our PPARγ-knockdown method will serve to clarify the PPARγ pathway in various cell types in vivo and in vitro, and will facilitate the development of therapeutic applications for a variety of diseases.  相似文献   
65.
A family of cystein proteases, the caspases, plays a central role in mediating cell death. In this study, we measured the activation of the initiator and effector caspase in real time, and studied the relationship between caspase activity and mitochondrial membrane potential in living cells by means of bioimaging. We also designed and developed a fluorescence resonance energy transfer (FRET)-based genetically encoded fluorescent indicator, which consisted of yellow fluorescent protein (YFP), a peptide sequence which can be cleaved by specific caspases, and cyan fluorescent protein (CFP). Two peptide sequences which could be cleaved by initiator caspases and effector caspases, respectively, were used. Simultaneous real-time measurements of the caspase activity and mitochondrial membrane potential in the cells treated with TNF-alpha and staurosporine revealed that dying cells showed caspase activation and mitochondrial depolarization, and that these events, however, were not firmly linked. Although it takes anywhere from 1 to over 10 h after the addition of the cell death inducer for the caspases to begin to be activated, initiator caspases and effector caspases are activated within a short period of time at the last stage in the entire process leading to cell death.  相似文献   
66.
Growth-blocking peptide (GBP) is a 25-amino acid cytokine isolated from the lepidopteran insect Pseudaletia separata. GBP exhibits various biological activities such as regulation of larval growth of insects, proliferation of a few kinds of cultured cells, and stimulation of a class of insect immune cells called plasmatocytes. The tertiary structure of GBP consists of a well structured core domain and disordered N and C termini. Our previous studies revealed that, in addition to the structured core, specific residues in the unstructured N-terminal region (Glu1 and Phe3) are also essential for the plasmatocyte-stimulating activity. In this study, a number of deletion, insertion, and site-directed mutants targeting the unstructured N-terminal residues of GBP were constructed to gain more detailed insight into the mode of interaction between the N-terminal region and GBP receptor. Alteration of the backbone length of the linker region between the core structure and N-terminal domain reduced plasmatocyte-stimulating activity. The substitutions of Gly5 or Gly6 in this linker region with more bulky residues, such as Phe and Pro, also remarkably reduced this activity. We conclude that the interaction of GBP with its receptor depends on the relative position of the N-terminal domain to the core structure, and therefore the backbone flexibility of Gly residues in the linker region is necessary for adoption of a proper conformation suited to receptor binding. Additionally, antagonistic experiments using deletion mutants confirmed that not only the core domain but also the N-terminal region of GBP are required for "receptor-binding," and furthermore Phe3 is a binding determinant of the N-terminal domain.  相似文献   
67.
The engagement of membrane-bound Igs (mIgs) results in growth arrest, accompanied by apoptosis, in the WEHI-231 murine B lymphoma cells, a cell line model representative of primary immature B cells. Inhibitor of differentiation (Id) proteins, members of the helix-loop-helix protein family, functions in proliferation, differentiation, and apoptosis in a variety of cell types. In this study, we analyzed the involvement of Id protein in mIg-induced growth arrest and apoptosis in WEHI-231 cells. Following stimulation with anti-IgM, expression of Id3 was up-regulated at both the mRNA and protein levels; this up-regulation could be reversed by CD40L treatment. Retrovirus-mediated transduction of the Id3 gene into WEHI-231 cells resulted in an accumulation of the cells in G(1) phase, but did not induce apoptosis. E box-binding activity decreased in response to anti-IgM administration, but increased after stimulation with either CD40L alone or anti-IgM plus CD40L, suggesting that E box-binding activity correlates with cell cycle progression. WEHI-231 cells overexpressing Id3 accumulated in G(1) phase, which was accompanied by reduced levels of cyclin D2, cyclin E, and cyclin A, and a reciprocal up-regulation of p27(Kip1). Both the helix-loop-helix and the C-terminal regions of Id3 were required for growth-suppressive activity. These data suggest that Id3 mimics mIg-mediated G(1) arrest in WEHI-231 cells.  相似文献   
68.
PEX1 is a type II AAA-ATPase that is indispensable for biogenesis and maintenance of the peroxisome, an organelle responsible for the primary metabolism of lipids, such as beta-oxidation and lipid biosynthesis. Recently, we demonstrated a striking structural similarity between its N-terminal domain and those of other membrane-related AAA-ATPases, such as valosine-containing protein (p97). The N-terminal domain of valosine-containing protein serves as an interface to its adaptor proteins p47 and Ufd1, whereas the physiologic interaction partner of the N-terminal domain of PEX1 remains unknown. Here we found that N-terminal domains isolated from valosine-containing protein, as well as from PEX1, bind phosphoinositides. The N-terminal domain of PEX1 appears to preferentially bind phosphatidylinositol 3-monophosphate and phosphatidylinositol 4-monophosphate, whereas the N-terminal domain of valosine-containing protein displays broad and nonspecific lipid binding. Although N-ethylmaleimide-sensitive fusion protein, CDC48 and Ufd1 have structures similar to that of valosine-containing protein, they displayed lipid specificity similar to that of the N-terminal domain of PEX1 in the assays. By mutational analysis, we demonstrate that a conserved arginine surrounded by hydrophobic residues is essential for lipid binding, despite very low sequence similarity between PEX1 and valosine-containing protein.  相似文献   
69.
Eotaxin-3/CCL26 is a functional ligand for CCR3 and abundantly produced by IL-4-/IL-13-stimulated vascular endothelial cells. CCL26 also functions as a natural antagonist for CCR1, CCR2, and CCR5. In this study, we report that CCL26 is yet a functional ligand for CX3CR1, the receptor for fractalkine/CX3CL1, which is expressed by CD16(+) NK cells, cytotoxic effector CD8(+) T cells, and CD14(low)CD16(high) monocytes. Albeit at relatively high concentrations, CCL26 induced calcium flux and chemotaxis in mouse L1.2 cells expressing human CX3CR1 but not mouse CX3CR1 and competed with CX3CL1 for binding to CX3CR1. In chemotaxis assays using human PBMCs, CCL26 attracted not only eosinophils but also CD16(+) NK cells, CD45RA(+)CD27(-)CD8(+) T cells, and CD14(low)CD16(high) monocytes. Intraperitoneal injection of CCL26 into mice rapidly recruited mouse eosinophils and intravenously transferred human CD16(+) NK cells into the peritoneal cavity. IL-4-stimulated HUVECs produced CCL26 and efficiently induced adhesion of cells expressing CX3CR1. Real-time PCR showed that skin lesions of psoriasis consistently contained CX3CL1 mRNA but not CCL26 mRNA, whereas those of atopic dermatitis contained CCL26 mRNA in all samples but CX3CL1 mRNA in only about half of the samples. Nevertheless, the skin lesions from both diseases consistently contained CX3CR1 mRNA at high levels. Thus, CCL26 may be partly responsible for the recruitment of cells expressing CX3CR1 in atopic dermatitis particularly when the expression of CX3CL1 is low. Collectively, CCL26 is another agonist for CX3CR1 and may play a dual role in allergic diseases by attracting eosinophils via CCR3 and killer lymphocytes and resident monocytes via CX3CR1.  相似文献   
70.
GBP, a small insect cytokine isolated from lepidopterans, has a variety of functions. We constructed a series of mutants focusing on the unstructured N-terminal residues of GBP by acetylation, deletion, and elongation in order to investigate the interaction between GBP and its receptor in plasmatocytes. The 1H NMR spectra showed no significant changes in the tertiary structures of these peptides, which indicated that all the mutants maintained their core beta-sheet structures. The deletion and acetylated mutants, 2-25GBP, Ac2-25GBP, and AcGBP, lost their activity. 2-25GBP was the strongest antagonist, while Ac2-25GBP and AcGBP were moderate. In contrast, the elongated mutants, (-1R)GBP, (-1A)GBP, and (-2G,-1R)GBP maintained their plasmatocyte-spreading activity. These results demonstrate the importance of the GBP N-terminal charged amine and length of N-terminal GBP-peptide backbone for plasmatocyte-spreading activity. Next, we analyzed other mutant peptides, 1-25(N2A)GBP and 2-25(N2A)GBP, focusing on Asn2. Surprisingly, 2-25(N2A)GBP had slight plasmatocyte-spreading activity, whereas 2-25GBP lost its activity. Finally, substituted mutant, F3AGBP, had neither plasmatocyte-spreading activity nor antagonistic activity. These results demonstrate the function of each N-terminal residue in the interaction between GBP and its receptor in plasmatocytes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号