首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1366篇
  免费   105篇
  1471篇
  2022年   10篇
  2021年   26篇
  2020年   10篇
  2019年   10篇
  2018年   12篇
  2017年   26篇
  2016年   35篇
  2015年   43篇
  2014年   51篇
  2013年   73篇
  2012年   86篇
  2011年   81篇
  2010年   43篇
  2009年   40篇
  2008年   73篇
  2007年   81篇
  2006年   82篇
  2005年   98篇
  2004年   65篇
  2003年   68篇
  2002年   54篇
  2001年   29篇
  2000年   36篇
  1999年   40篇
  1998年   18篇
  1997年   12篇
  1996年   10篇
  1995年   8篇
  1994年   9篇
  1993年   6篇
  1992年   19篇
  1991年   14篇
  1990年   16篇
  1989年   35篇
  1988年   18篇
  1987年   19篇
  1986年   18篇
  1985年   13篇
  1984年   11篇
  1983年   7篇
  1982年   7篇
  1981年   7篇
  1980年   4篇
  1979年   9篇
  1978年   8篇
  1977年   5篇
  1976年   9篇
  1973年   6篇
  1972年   3篇
  1971年   3篇
排序方式: 共有1471条查询结果,搜索用时 10 毫秒
81.
Localization of pp60c-src in growth cone of PC12 cell   总被引:2,自引:0,他引:2  
By immunocytochemical and biochemical techniques, we observed the localization and expression of pp60c-src in nerve growth factor (NGF)-treated PC12 cells. Immunostaining of pp60c-src is detected in the neuronal soma and the tips of neurites (growth cones). Immunofluorescence in the neurites is less significant. High-resolution microscopy reveals that the location of pp60c-src in growth cone is in good agreement with the adhesive site of growth cone to the substratum. The pp60c-src kinase activity and the pp60c-src protein level increase 3.1- to 3.5-fold and 2.0-fold during differentiation of PC12 cells, respectively. The pp60c-src levels in the neurite fraction are also higher than those in the neuronal soma fraction. These results support the immunocytochemical finding that pp60c-src is localized in growth cones of differentiated PC12 cells. Furthermore, we discuss the possible role of pp60c-src in growth cone.  相似文献   
82.
The CrkL adaptor protein is involved in signaling from the receptor for erythropoietin (Epo) as well as interleukin (IL)-3 and activates beta(1) integrin-mediated hematopoietic cell adhesion through its interaction with C3G, a guanine nucleotide exchange factor for Rap1. We demonstrate here that Epo as well as IL-3 activates Rap1 in an IL-3-dependent hematopoietic cell line, 32D, expressing the Epo receptor. The cytokine-induced activation of Rap1 was augmented in cells that inducibly overexpress CrkL or C3G. The CrkL-mediated enhancement of cell adhesion was inhibited by expression of a dominant negative mutant of Rap1, Rap1A-17N, whereas an activated mutant of Rap1, Rap1A-63E, activated beta(1) integrin-dependent adhesion of hematopoietic cells. In 32D cells, Rap1 was also activated by phorbol 12-myristate 13-acetate and ionomycin, which also enhanced cell adhesion to fibronectin, whereas, an inhibitor of phospholipase C, inhibited both cytokine-induced activation of Rap1 and cell adhesion. It was also demonstrated that Rap1 as well as CrkL is involved in signaling from the EpoR endogenously expressed in a human leukemic cell line, UT-7. These results suggest that Epo and IL-3 activate Rap1 at least partly through the CrkL-C3G complex as well as through additional pathways most likely involving phospholipase Cgamma and strongly implicate Rap1 in regulation of beta(1) integrin-mediated hematopoietic cell adhesion.  相似文献   
83.
84.
Kanda Y  Nishio E  Kuroki Y  Mizuno K  Watanabe Y 《Life sciences》2001,68(17):1989-2000
Thrombin is a potent mitogen for vascular smooth muscle cells. However, the signaling pathways by which thrombin mediates its mitogenic response are not fully understood. The ERK (extracellular signal-regulated protein kinase) and JNK (c-Jun N-terminal kinase) members of the mitogen-activated protein kinase (MAPK) family are reported to be activated by thrombin. We have investigated the response to thrombin of another member of the MAPK family, p38 MAPK, which has been suggested to be activated by both stress and inflammatory stimuli in vascular smooth muscle cells. We found that thrombin induced time- and dose-dependent activation of p38 MAPK. Maximal stimulation of p38 MAPK was observed after a 10-min incubation with 1 unit ml(-1) thrombin. GF109203X, a protein kinase C inhibitor, and prolonged treatment with phorbol 12-myristate 13-acetate partially inhibited p38 MAPK activation. A tyrosine kinase inhibitor, genistein, also inhibited p38 MAPK activation in a dose-dependent manner. p38 MAPK activation was inhibited by overexpression of betaARK1ct (beta-adrenergic receptor kinase I C-terminal peptide). p38 MAPK activation was also inhibited by expression of dominant-negative Ras, not by dominant-negative Rac. We next examined the effect of a p38 MAPK inhibitor, SB203580, on thrombin-induced proliferation. SB203580 inhibited thrombin-induced DNA synthesis in a dose-dependent manner. These results suggest that thrombin activates p38 MAPK in a manner dependent on Gbetagamma, protein kinase C, a tyrosine kinase, and Ras, that p38 MAPK has a role in thrombin-induced mitogenic response in the cells.  相似文献   
85.
Differentiation of endothelial cells, i.e., formation of a vessel lumen, is a prerequisite for angiogenesis. The underlying molecular mechanisms are ill defined. We have studied a brain capillary endothelial cell line (IBEC) established from H-2Kb-tsA58 transgenic mice. These cells form hollow tubes in three-dimensional type I collagen gels in response to fibroblast growth factor-2 (FGF-2). Culture of IBEC on collagen gels in the presence of FGF-2 protected cells from apoptosis and allowed tube formation (i.e., differentiation) but not growth of the cells. FGF-induced differentiation, but not cell survival, was inhibited by treatment of the cells with an anti-beta1-integrin IgG. Changes in integrin expression in the collagen-gel cultures could not be detected. Rather, cell-matrix interactions critical for endothelial cell differentiation were created during the culture, as indicated by the gradual increase in tyrosine phosphorylation of focal adhesion kinase in the collagen-gel cultures. Inclusion of laminin in the collagen gels led to FGF-2-independent formation of tube structures, but cells were not protected from apoptosis. These data indicate that FGF receptor-1 signal transduction in this cell model results in cell survival. Through mechanisms dependent on cell-matrix interactions, possibly involving the alpha3beta1-integrin and laminin produced by the collagen-cultured IBE cells, FGF stimulation also leads to differentiation of the cells.  相似文献   
86.
Somatic embryogenesis is a unique process in plant cells. For example, embryogenic cells (EC) of carrot (Daucus carota) maintained in a medium containing 2,4-dichlorophenoxyacetic acid (2,4-D) regenerate whole plants via somatic embryogenesis after the depletion of 2,4-D. Although some genes such as C-ABI3 and C-LEC1 have been found to be involved in somatic embryogenesis, the critical molecular and cellular mechanisms for somatic embryogenesis are unknown. To characterize the early mechanism in the induction of somatic embryogenesis, we isolated genes expressed during the early stage of somatic embryogenesis after 2,4-D depletion. Subtractive hybridization screening and subsequent RNA gel blot analysis suggested a candidate gene, Carrot Early Somatic Embryogenesis 1 (C-ESE1). C-ESE1 encodes a protein that has agglutinin and S-locus-glycoprotein domains and its expression is highly specific to primordial cells of somatic embryo. Transgenic carrot cells with reduced expression of C-ESE1 had wide intercellular space and decreased polysaccharides on the cell surface and showed delayed development in somatic embryogenesis. The importance of cell-to-cell attachment in somatic embryogenesis is discussed.  相似文献   
87.
Recent molecular biological studies have revealed that some photosymbiotic invertebrates dwelling in coral reefs host several genetically different dinoflagellates, Symbiodinium species, as symbionts. However, little is known about the difference in physiologic characteristics among these symbionts living in a single host, because some Symbiodinium strains are difficult to culture in vitro. To isolate some of these Symbiodinium strains, we have developed an agar culture medium plate containing antibiotics and a giant clam tissue homogenate. Using-this medium we isolated two new Symbiodinium strains from two molluscan hosts, Tridacna crocea and Pteraeolidia ianthina, each of which hosted two different Symbiodinium strains belonging to Symbiodinium C and D, respectively. The tissue homogenate was essential for the growth of Symbiodinium D. Although it was not essential for the growth of Symbiodinium C, it did stimulate the initial growth. For the isolation of some Symbiodinium strains, isolation medium containing host homogenate is effective.  相似文献   
88.
Composition and structure of the centromeric region of rice chromosome 8   总被引:23,自引:0,他引:23  
Understanding the organization of eukaryotic centromeres has both fundamental and applied importance because of their roles in chromosome segregation, karyotypic stability, and artificial chromosome-based cloning and expression vectors. Using clone-by-clone sequencing methodology, we obtained the complete genomic sequence of the centromeric region of rice (Oryza sativa) chromosome 8. Analysis of 1.97 Mb of contiguous nucleotide sequence revealed three large clusters of CentO satellite repeats (68.5 kb of 155-bp repeats) and >220 transposable element (TE)-related sequences; together, these account for approximately 60% of this centromeric region. The 155-bp repeats were tandemly arrayed head to tail within the clusters, which had different orientations and were interrupted by TE-related sequences. The individual 155-bp CentO satellite repeats showed frequent transitions and transversions at eight nucleotide positions. The 40 TE elements with highly conserved sequences were mostly gypsy-type retrotransposons. Furthermore, 48 genes, showing high BLAST homology to known proteins or to rice full-length cDNAs, were predicted within the region; some were close to the CentO clusters. We then performed a genome-wide survey of the sequences and organization of CentO and RIRE7 families. Our study provides the complete sequence of a centromeric region from either plants or animals and likely will provide insight into the evolutionary and functional analysis of plant centromeres.  相似文献   
89.
The proprotein precursors of storage proteins are post-translationally processed to produce their respective mature forms within the protein storage vacuoles of maturing seeds. To investigate the processing mechanism in vivo, we isolated Arabidopsis mutants that accumulate detectable amounts of the precursors of the storage proteins, 12 S globulins and 2 S albumins, in their seeds. All six mutants isolated have a defect in the beta VPE gene. VPE (vacuolar processing enzyme) is a cysteine proteinase with substrate specificity toward an asparagine residue. We further generated various mutants lacking different VPE isoforms: alpha VPE, beta VPE, and/or gamma VPE. More than 90% of VPE activity is abolished in the beta vpe-3 seeds, and no VPE activity is detected in the alpha vpe-1/beta vpe-3/gamma vpe-1 seeds. The triple mutant seeds accumulate no properly processed mature storage proteins. Instead, large amounts of storage protein precursors are found in the seeds of this mutant. In contrast to beta vpe-3 seeds, which accumulate both precursors and mature storage proteins, the other single (alpha vpe-1 and gamma vpe-1) and double (alpha vpe-1/gamma vpe-1) mutants accumulate no precursors in their seeds at all. Therefore, the vegetative VPEs, alpha VPE and gamma VPE, are not necessary for precursor processing in the presence of beta VPE, but partly compensates for the deficiency in beta VPE in beta vpe-3 seeds. In the absence of functional VPEs, a proportion of pro2S albumin molecules are alternatively cleaved by aspartic proteinase. This cleavage by aspartic proteinase is promoted by the initial processing of pro2S albumins by VPE. Our overall results suggest that seed-type beta VPE is most essential for the processing of storage proteins, and that the vegetative-type VPEs and aspartic proteinase complement beta VPE activity in this processing.  相似文献   
90.
Results from previous studies using an inbred strain of Xenopus laevis have led to the proposition that metamorphosis includes the events by which the newly differentiating adult immune system, including T lymphocytes, recognizes and eliminates larval skin cells as 'non-self'. More recently, a larval antigen targeted by adult T cells was identified as a 59 kDa protein with a specific peptide sequence. Using antisera directed against the larval antigen and the peptide, immunohistochemistry and western blotting were done to examine expression of the 59 kDa larval antigen in the skin during larval and metamorphic periods. There was no expression before Nieuwkoop and Faber stage 53. Expression was first seen at the beginning of metamorphic stage 54, when hind limbs appear, and increased thereafter, in apical and skein cells of both trunk and tail regions. In the trunk region, expression started to decrease at stage 58, until it completely disappeared at stage 62 (metamorphic climax). In the tail skin, however, expression persisted throughout the metamorphic stages. Treatment of larvae with thyroid hormone (TH) resulted in repression of expression of the 59 kDa molecule in a dose-dependent manner. Downregulation occurred earlier in the trunk than in the tail skin. These results suggest involvement in metamorphic events of an immunological mechanism: differential expression of the larval antigen in the trunk and tail skin cells due to their differing concentration of TH results in the tail, but not the trunk skin, being selectively attacked by the newly differentiating adult-type immune system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号