首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   297篇
  免费   18篇
  2022年   3篇
  2021年   10篇
  2020年   3篇
  2018年   8篇
  2017年   7篇
  2016年   14篇
  2015年   21篇
  2014年   17篇
  2013年   21篇
  2012年   29篇
  2011年   34篇
  2010年   19篇
  2009年   23篇
  2008年   28篇
  2007年   13篇
  2006年   21篇
  2005年   5篇
  2004年   11篇
  2003年   4篇
  2002年   4篇
  2001年   3篇
  2000年   5篇
  1999年   5篇
  1996年   1篇
  1995年   2篇
  1992年   1篇
  1991年   3篇
排序方式: 共有315条查询结果,搜索用时 15 毫秒
91.
92.

Purpose

Human sodium/iodide symporter (hNIS) protein is a membrane glycoprotein that transports iodide ions into thyroid cells. The function of this membrane protein is closely regulated by post-translational glycosylation. In this study, we measured glycosylation-mediated changes in subcellular location of hNIS and its function of iodine uptake.

Methods

HeLa cells were stably transfected with hNIS/tdTomato fusion gene in order to monitor the expression of hNIS. Cellular localization of hNIS was visualized by confocal microscopy of the red fluorescence of tdTomato. The expression of hNIS was evaluated by RT-PCR and immunoblot analysis. Functional activity of hNIS was estimated by radioiodine uptake. Cyclic AMP (cAMP) and tunicamycin were used to stimulate and inhibit glycosylation, respectively. In vivo images were obtained using a Maestro fluorescence imaging system.

Results

cAMP-mediated Glycosylation of NIS resulted in increased expression of hNIS, stimulating membrane translocation, and enhanced radioiodine uptake. In contrast, inhibition of glycosylation by treatment with tunicamycin dramatically reduced membrane translocation of intracellular hNIS, resulting in reduced radioiodine uptake. In addition, our hNIS/tdTomato fusion reporter successfully visualized cAMP-induced hNIS expression in xenografted tumors from mouse model.

Conclusions

These findings clearly reveal that the membrane localization of hNIS and its function of iodine uptake are glycosylation-dependent, as our results highlight enhancement of NIS expression and glycosylation with subsequent membrane localization after cAMP treatment. Therefore, enhancing functional NIS by the increasing level of glycosylation may be suggested as a promising therapeutic strategy for cancer patients who show refractory response to conventional radioiodine treatment.  相似文献   
93.
DNA double-strand breaks (DSBs) are the most severe type of DNA damage and are primarily repaired by non-homologous end joining (NHEJ) and homologous recombination (HR) in the G1 and S/G2 phase, respectively. Although CtBP-interacting protein (CtIP) is crucial in DNA end resection during HR following DSBs, little is known about how CtIP levels increase in an S phase-specific manner. Here, we show that Serpine mRNA binding protein 1 (SERBP1) regulates CtIP expression at the translational level in S phase. In response to camptothecin-mediated DNA DSBs, CHK1 and RPA2 phosphorylation, which are hallmarks of HR activation, was abrogated in SERBP1-depleted cells. We identified CtIP mRNA as a binding target of SERBP1 using RNA immunoprecipitation-coupled RNA sequencing, and confirmed SERBP1 binding to CtIP mRNA in S phase. SERBP1 depletion resulted in reduction of polysome-associated CtIP mRNA and concomitant loss of CtIP expression in S phase. These effects were reversed by reconstituting cells with wild-type SERBP1, but not by SERBP1 ΔRGG, an RNA binding defective mutant, suggesting regulation of CtIP translation by SERBP1 association with CtIP mRNA. These results indicate that SERBP1 affects HR-mediated DNA repair in response to DNA DSBs by regulation of CtIP translation in S phase.  相似文献   
94.
In the present study, a laboratory scale anoxic/oxic (A/O) reactor is used for the removal of nutrient and sludge reduction. Phosphorus removal was achieved through simultaneous precipitation, and sludge production was reduced through thermochemical pretreatment. The main objective of the study was to investigate the influence of sludge pretreatment on the nitrification rate. Total phosphorus in the effluent was maintained around 0.5 ~ 1.0 mg/L by simultaneous precipitation, using coagulant alum at 2.2 mole ratio. Before simultaneous precipitation, the nitrification rate of the A/O reactor was found to be 0.050 g N-NH4 +/g MLVSS.d. The thermochemical sludge pretreatment began on the 120th day at pH 11 and 80°C. The initiation of sludge pretreatment brought about a significant reduction of the A/O reactor nitrification rate, which fell to 0.038 g N-NH4 +/g MLVSS/day. The effect of sludge pretreatment was reflected in the reduction of the nitrogen removal efficiency from 85 to 74%. Recycling of the thermochemically pretreated sludge accounted for 57% sludge reduction, which had an adverse influence on the nitrification rate of the system.  相似文献   
95.
Many studies have suggested that the behavioral and reinforcing effects of morphine are induced by hyperactivation of the mesolimbic dopaminergic system, which results in increases in locomotor activity, c-Fos expression in the nucleus accumbens (NAc), and tyrosine hydroxylase (TH) in the ventral tegmental area (VTA). In order to investigate the effect of wild ginseng (WG) on treating morphine addiction, we examined the behavioral sensitization of locomotor activity and c-Fos and TH expression in the rat brain using immunohistochemistry. Intraperitioneal injection of WG (100 and 200 mg/kg), 30 min before administration of a daily injection of morphine (40 mg/kg, s.c.), significantly inhibited morphine-induced increases in c-Fos expression in NAc and TH expression in VTA as well as in locomotor activity, as compared with Panax ginseng. It was demonstrated that the inhibitory effect of WG on the behavioral sensitization after repeated exposure to morphine was closely associated with the reduction of dopamine biosynthesis and postsynaptic neuronal activity. It suggests that WG extract may be effective for inhibiting the behavioral effects of morphine by possibly modulating the central dopaminergic system and that WG might be a useful resource to develop an agent for preventing and treating morphine addiction.  相似文献   
96.
The explosion of data and transactions demands a creative approach for data processing in a variety of applications. Research on remote memory systems (RMSs), so as to exploit the superior characteristics of dynamic random access memory (DRAM), has been performed for many decades, and today’s information explosion galvanizes researchers into shedding new light on the technology. Prior studies have mainly focused on architectural suggestions for such systems, highlighting different design rationale. These studies have shown that choosing the appropriate applications to run on an RMS is important in fully utilizing the advantages of remote memory. This article provides an extensive performance evaluation for various types of data processing applications so as to address the efficacy of an RMS by means of a prototype RMS with reliability functionality. The prototype RMS used is a practical kernel-level RMS that renders large memory data processing feasible. The abstract concept of remote memory was materialized by borrowing unused local memory in commodity PCs via a high speed network capable of Remote Direct Memory Access (RDMA) operations. The prototype RMS uses remote memory without any part of its computation power coming from remote computers. Our experimental results suggest that an RMS can be practical in supporting the rigorous demands of commercial in memory database systems that have high data access locality. Our evaluation also convinces us of the possibility that a reliable RMS can satisfy both the high degree of reliability and efficiency for large memory data processing applications whose data access pattern has high locality.  相似文献   
97.
Yoon  Joo Young  Yeom  Jeonghun  Lee  Heebum  Kim  Kyutae  Na  Seungjin  Park  Kunsoo  Paek  Eunok  Lee  Cheolju 《BMC bioinformatics》2011,12(1):1-12

Background

Continuing research into the global multiple sequence alignment problem has resulted in more sophisticated and principled alignment methods. Unfortunately these new algorithms often require large amounts of time and memory to run, making it nearly impossible to run these algorithms on large datasets. As a solution, we present two general methods, Crumble and Prune, for breaking a phylogenetic alignment problem into smaller, more tractable sub-problems. We call Crumble and Prune meta-alignment methods because they use existing alignment algorithms and can be used with many current alignment programs. Crumble breaks long alignment problems into shorter sub-problems. Prune divides the phylogenetic tree into a collection of smaller trees to reduce the number of sequences in each alignment problem. These methods are orthogonal: they can be applied together to provide better scaling in terms of sequence length and in sequence depth. Both methods partition the problem such that many of the sub-problems can be solved independently. The results are then combined to form a solution to the full alignment problem.

Results

Crumble and Prune each provide a significant performance improvement with little loss of accuracy. In some cases, a gain in accuracy was observed. Crumble and Prune were tested on real and simulated data. Furthermore, we have implemented a system called Job-tree that allows hierarchical sub-problems to be solved in parallel on a compute cluster, significantly shortening the run-time.

Conclusions

These methods enabled us to solve gigabase alignment problems. These methods could enable a new generation of biologically realistic alignment algorithms to be applied to real world, large scale alignment problems.  相似文献   
98.
The well-conserved NBS domain of resistance (R) genes cloned from many plants allows the use of a PCR-based approach to isolate resistance gene analogs (RGAs). In this study, we isolated an RGA (CapRGC) from Capsicum annuum “CM334” using a PCR-based approach. This sequence encodes a protein with very high similarity to Rx genes, the Potato Virus X (PVX) R genes from potato. An evolutionary analysis of the CapRGC gene and its homologs retrieved by an extensive search of a Solanaceae database provided evidence that Rx-like genes (eight ESTs or genes that show very high similarity to Rx) appear to have diverged from R1 [an NBS-LRR R gene against late blight (Phytophthora infestans) from potato]-like genes. Structural comparison of the NBS domains of all the homologs in Solanaceae revealed that one novel motif, 14, is specific to the Rx-like genes, and also indicated that several other novel motifs are characteristic of the R1-like genes. Our results suggest that Rx-like genes are ancient but conserved. Furthermore, the novel conserved motifs can provide a basis for biochemical structural–function analysis and be used for degenerate primer design for the isolation of Rx-like sequences in other plant species. Comparative mapping study revealed that the position of CapRGC is syntenic to the locations of Rx and its homolog genes in the potato and tomato, but cosegregation analysis showed that CapRGC may not be the R gene against PVX in pepper. Our results confirm previous observations that the specificity of R genes is not conserved, while the structure and function of R genes are conserved. It appears that CapRGC may function as a resistance gene to another pathogen, such as the nematode to which the structure of CapRGC is most similar.  相似文献   
99.
Eukaryotic translation initiation factor 3 is composed of 13 subunits (eIF3a through eIF3m) and plays an essential role in translation. During apoptosis, several caspases rapidly down-regulate protein synthesis by cleaving eIF4G, -4B, -3j, and -2α. In this study, we found that the activation of caspases by cisplatin in T24 cells induces the cleavage of subunit G of the eIF3 complex (eIF3g). The cleavage site (SLRD220G) was identified, and we found that the cleaved N-terminus was translocated to the nucleus, activating caspase-3, and that it also showed a strong DNase activity. These data demonstrate the important roles of eIF3g in the translation initiation machinery and in DNA degradation during apoptosis.  相似文献   
100.
Arabidopsis thaliana gene At5g06450 encodes a putative DnaQ‐like 3′‐5′ exonuclease domain‐containing protein (AtDECP). The DnaQ‐like 3′‐5′ exonuclease domain is often found as a proofreading domain of DNA polymerases. The overall structure of AtDECP adopts an RNase H fold that consists of a mixed β‐sheet flanked by α‐helices. Interestingly, AtDECP forms a homohexameric assembly with a central six fold symmetry, generating a central cavity. The ring‐shaped structure and comparison with WRN‐exo, the best structural homologue of AtDECP, suggest a possible mechanism for implementing its exonuclease activity using positively charged patch on the N‐terminal side of the homohexameric assembly. The homohexameric structure of AtDECP provides unique information about the interaction between the DnaQ‐like 3′‐5′ exonuclease and its substrate nucleic acids.Proteins 2013. © 2013 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号