首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15514篇
  免费   811篇
  国内免费   8篇
  16333篇
  2022年   74篇
  2021年   124篇
  2020年   66篇
  2019年   96篇
  2018年   156篇
  2017年   162篇
  2016年   282篇
  2015年   406篇
  2014年   483篇
  2013年   1218篇
  2012年   832篇
  2011年   893篇
  2010年   525篇
  2009年   515篇
  2008年   867篇
  2007年   949篇
  2006年   940篇
  2005年   991篇
  2004年   1077篇
  2003年   976篇
  2002年   954篇
  2001年   233篇
  2000年   176篇
  1999年   208篇
  1998年   236篇
  1997年   228篇
  1996年   180篇
  1995年   154篇
  1994年   125篇
  1993年   176篇
  1992年   186篇
  1991年   127篇
  1990年   121篇
  1989年   117篇
  1988年   111篇
  1987年   90篇
  1986年   103篇
  1985年   114篇
  1984年   119篇
  1983年   96篇
  1982年   115篇
  1981年   106篇
  1980年   93篇
  1979年   59篇
  1978年   63篇
  1977年   49篇
  1976年   60篇
  1975年   37篇
  1974年   45篇
  1973年   38篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
191.
192.
Aquatic mosses of Leptobryum species form unique tower-like pillars of vegetation termed “moss pillars” in Antarctic lakes. Moss pillars have distinct redox-affected sections: oxidative exteriors and reductive interiors. We have proposed that a “pillar” is a community and habitat of functionally interdependent organisms and may represent a mini-biosphere. Batteries of 16S rRNA genotypes, or phylotypes, of eubacteria and cyanobacteria, but no archaea, have been identified in moss pillars. However, detailed identification or phylogenetic analyses of the moss and their associated eukaryotic microbiota have not been performed. This study analyzed near-full-length 18S rRNA gene sequences obtained from two whole moss pillars. In total, 28 PCR clone libraries from two whole moss pillars were constructed, and 96 clones from each library (total 2,688 clones) were randomly selected and sequenced. Molecular phylogenetic analysis revealed that the phylotype belonging to Bryophyta, considered to be derived from moss, was closely related (99.9?%) to the 18S rRNA gene sequence from Leptobryum pyriforme. Unexpectedly, phylotypes belonging to a novel clade of fungi dominated (approximately 27–75?%) the moss pillar libraries. This suggests that fungi may contribute to carbon cycling in the moss pillar as parasites or decomposers. In addition, phylotypes related to ciliates and tardigrades were subdominant in the exterior, while the phylotype of the ameba-like, single-celled eukaryote, Cercomonas (Cercozoa), was detected only in the interior. These features were shared by both moss pillars. The 18S rRNA gene-based profiles demonstrated that redox-related factors may control distribution of some eukaryotic microbes in a whole moss pillar.  相似文献   
193.
Differential posttranslational modification of proliferating cell nuclear antigen (PCNA) by ubiquitin or SUMO plays an important role in coordinating the processes of DNA replication and DNA damage tolerance. Previously it was shown that the loss of RAD6-dependent error-free postreplication repair (PRR) results in DNA damage checkpoint-mediated G2 arrest in cells exposed to chronic low-dose UV radiation (CLUV), whereas wild-type and nucleotide excision repair-deficient cells are largely unaffected. In this study, we report that suppression of homologous recombination (HR) in PRR-deficient cells by Srs2 and PCNA sumoylation is required for checkpoint activation and checkpoint maintenance during CLUV irradiation. Cyclin-dependent kinase (CDK1)-dependent phosphorylation of Srs2 did not influence checkpoint-mediated G2 arrest or maintenance in PRR-deficient cells but was critical for HR-dependent checkpoint recovery following release from CLUV exposure. These results indicate that Srs2 plays an important role in checkpoint-mediated reversible G2 arrest in PRR-deficient cells via two separate HR-dependent mechanisms. The first (required to suppress HR during PRR) is regulated by PCNA sumoylation, whereas the second (required for HR-dependent recovery following CLUV exposure) is regulated by CDK1-dependent phosphorylation.DNA damage occurs frequently in all organisms as a consequence of both endogenous metabolic processes and exogenous DNA-damaging agents. In nature, the steady-state level of DNA damage is usually very low. However, chronic low-level DNA damage can lead to age-related genome instability as a consequence of the accumulation of DNA damage (12, 27). Increasing evidence implicates DNA damage-related replication stress in genome instability (7, 21). Replication stress occurs when an active fork encounters DNA lesions or proteins tightly bound to DNA. These obstacles pose a threat to the integrity of the replication fork and are thus a potential source of genome instability, which can contribute to tumorigenesis and aging in humans (4, 11). Confronted with this risk, cells have developed fundamental DNA damage response mechanisms in order to faithfully complete DNA replication (8).In budding yeast Saccharomyces cerevisiae, the Rad6-dependent postreplication repair (PRR) pathway is subdivided into three subpathways, which allow replication to resume by bypassing the lesion without repairing the damage (3, 22, 33). Translesion synthesis (TLS) pathways dependent on the DNA polymerases eta and zeta promote error-free or mutagenic bypass depending on the DNA lesion and are activated upon monoubiquitination of proliferating cell nuclear antigen (PCNA) at Lys164 (K164) (5, 16, 37). The Rad5 (E3) and Ubc13 (E2)/Mms2 (E2 variant)-dependent pathway promotes error-free bypass by template switching and is activated by polyubiquitination of PCNA via a Lys63-linked ubiquitin chain (16, 38, 41). It remains mechanistically unclear how polyubiquitinated PCNA promotes template switching at the molecular level. In addition to its ubiquitin E3 activity, Rad5 also has a helicase domain and was recently shown to unwind and reanneal fork structures in vitro (6). This led to the proposal that Rad5 helicase activity is required at replication forks to promote fork regression and subsequent template switching. It is possible that PCNA polyubiquitination acts to facilitate Rad5-dependent template switching by inhibiting monoubiquitination-dependent TLS activity and/or by recruiting alternative proteins to the fork.In addition to modification by ubiquitin, PCNA can also be sumoylated on Lys164 by the SUMO E3 ligase Siz1 (16). A second sumoylation site, Lys127, is also targeted by an alternative SUMO E3 ligase, Siz2, albeit with lower efficiency (16, 30). PCNA SUMO modification results in recruitment of the Srs2 helicase and subsequent inhibition of Rad51-dependent recombination events (29, 32). The modification can therefore allow the replicative bypass of lesions by promoting the RAD6 pathway. Srs2 is known to act as an antirecombinase by eliminating recombination intermediates. This can occur independently of PCNA sumoylation, and when srs2Δ cells are UV irradiated or other antirecombinases, such as Sgs1, are concomitantly deleted, toxic recombination structures accumulate (1, 10). Such genetic data are consistent with the ability of Srs2 to disassemble the Rad51 nucleoprotein filaments formed on single-stranded DNA (ssDNA) in vitro (20, 40). In addition to directly inhibiting homologous recombination (HR), Srs2 is also involved in regulating HR outcomes to not produce crossover recombinants in the mitotic cell cycle (18, 34, 35).The UV spectrum present in sunlight is a primary environmental cause of exogenous DNA damage. Sunlight is a potent and ubiquitous carcinogen responsible for much of the skin cancer in humans (17). In the natural environment, organisms are exposed to chronic low-dose UV light (CLUV), as opposed to the acute high doses commonly used in laboratory experiments. Hence, understanding the cellular response to CLUV exposure is an important approach complementary to the more traditional laboratory approaches for clarifying the biological significance of specific DNA damage response pathways. A recently developed experimental assay for the analysis of CLUV-induced DNA damage responses was used to show that the PCNA polyubiquitination-dependent error-free PRR pathway plays a critical role in tolerance of CLUV exposure by preventing the generation of excessive ssDNA when replication forks arrest, thus suppressing counterproductive checkpoint activation (13).Mutants of SRS2 were first isolated by their ability to suppress the radiation sensitivity of rad6 and rad18 mutants (defective in PRR) by a mechanism that requires a functional HR pathway (23, 36). In this study, we analyzed the function of Srs2 in CLUV-exposed PRR-deficient cells. We established that Srs2 acts in conjunction with SUMO-modified PCNA to lower the threshold for checkpoint activation and maintenance by suppressing the function of HR in rad18Δ cells exposed to CLUV. We also showed that Srs2 is separately involved in an HR-dependent recovery process following cessation of CLUV exposure and that this second role for Srs2, unlike its primary role in checkpoint activation and maintenance, is regulated by CDK1-dependent phosphorylation. Thus, Srs2 is involved in both CLUV-induced checkpoint-mediated arrest and recovery from CLUV exposure in PRR-deficient cells, and these two functions, while both involving HR, are separable and thus independent.  相似文献   
194.
Buffalo is an economically important livestock species in Asia. Little is known about male germ line technology owing to lack of sufficient understanding regarding expression of germ- and somatic-cell specific-proteins in the testis. In this study, we identified UCHL-1 (PGP 9.5) and lectin- Dolichos biflorus agglutinin (DBA) as specific markers for spermatogonia in buffalo testis. Expression of germ-cell and pluripotency-specific proteins such as DDX4 (VASA) and POU5F1 (OCT3/4) were also present in spermatogonia. Interestingly, the expression of somatic cell-specific proteins such as VIMENTIN and GATA4 were also detected in germ cells. Using two-step enzymatic digestion followed by differential plating and Percoll density-gradient centrifugation, an approximately 55% spermatogonia-enriched cell population could be obtained from the prepubertal buffalo testis. Isolated spermatogonia could survive and proliferate in vitro in DMEM/F12 medium containing 10% fetal bovine serum in the absence of any specific growth factors for a week. Cultured spermatogonia showed DBA affinity and expressed DDX4 and POU5F1. These results may help to establish a long-term culture system for buffalo spermatogonia.  相似文献   
195.
196.
The effects of local population density, sex morph [protogynous (PG) or protandrous (PA)], and individual tree size on the demographic processes of seed production were investigated in a heterodichogamous maple, Acer mono Maxim. var. Marmoratum (Nichols.) Hara f. dissectum, in a temperate forest of Japan. As the distance from conspecific reproductive adults increased, the percentage of immature seed fall and empty seeds increased significantly, indicating higher pollination success along with local population density. Although the difference was not distinct, pollination success was affected by the local population density of the reciprocal sex morph rather than that of both sex morphs. The trees at higher local population density sites suffered higher seed mortality due to predation and decay, and tended to produce smaller seeds. Thus, the impacts of local population density operated both positively and negatively on reproduction. As a factor of individual traits, tree size scarcely affected any demographic processes. On the other hand, sex morph did affect pollination success. Trees of PG type had lower immature seed fall than those of PA type, suggesting that the former has higher efficiency of pollen acceptance than the latter. The results on seed demography presented here partly support previous suggestions that heterodichogamous plants exhibit reciprocal cross-pollination and gender specialization as reproductive traits.  相似文献   
197.
Rab proteins regulate multiple, complex processes of membrane traffic. Among these proteins, Rab27a has been shown to function specifically in regulated exocytic pathways. However, the roles of Rab27b, another Rab27 subfamily member, have not been well characterized. We disrupted the Rab27b gene in mice. The targeting vector was designed to insert LacZ downstream of the initiation codon of the Rab27b gene so that the authentic promoter should drive this reporter gene. A comprehensive analysis of Rab27b expression using this mouse strain indicated that it is widely expressed not only in canonical secretory cells, but also in neurons and cells involved in surface protection and mechanical extension. To evaluate the function in pituitary endocrine cells where the isoform Rab27a is coexpressed, we generated Rab27a/Rab27b double knockout mice by crossing Rab27b knockout mice with Rab27a-mutated ashen mice. The polarized distribution of secretory granules close to the plasma membrane was markedly impaired in the pituitary of double knockout mice, indicating that the Rab27 subfamily is involved in the delivery of granules near the exocytic site. In conjunction with a phenotype having a pituitary devoid of the Rab27 effector granuphilin, we discuss the relationship between the residence and the releasable pool of granules.  相似文献   
198.
Numerous microbes inhabit the human intestine, many of which are uncharacterized or uncultivable. They form a complex microbial community that deeply affects human physiology. To identify the genomic features common to all human gut microbiomes as well as those variable among them, we performed a large-scale comparative metagenomic analysis of fecal samples from 13 healthy individuals of various ages, including unweaned infants. We found that, while the gut microbiota from unweaned infants were simple and showed a high inter-individual variation in taxonomic and gene composition, those from adults and weaned children were more complex but showed a high functional uniformity regardless of age or sex. In searching for the genes over-represented in gut microbiomes, we identified 237 gene families commonly enriched in adult-type and 136 families in infant-type microbiomes, with a small overlap. An analysis of their predicted functions revealed various strategies employed by each type of microbiota to adapt to its intestinal environment, suggesting that these gene sets encode the core functions of adult and infant-type gut microbiota. By analysing the orphan genes, 647 new gene families were identified to be exclusively present in human intestinal microbiomes. In addition, we discovered a conjugative transposon family explosively amplified in human gut microbiomes, which strongly suggests that the intestine is a 'hot spot' for horizontal gene transfer between microbes.  相似文献   
199.
A simple and sensitive high-performance liquid chromatography (HPLC) method utilizing UV detection was developed for the determination of plasma pyrrole (Py)-imidazole (Im) polyamides in rats and applied to the pharmacokinetic study of compounds. After deproteinization of plasma with methanol, Py-Im polyamides were analyzed with a reversed-phase TSK-GEL ODS-80TM (4.6 mmx15.0 cm TOSOH Co., Japan) column maintained at 40 degrees C. The mobile phase solvent A was 0.1% acetic acid and the solvent B was HPLC-grade acetonitrile (0-10 min, A: 100-20%, B: 0-80% linear gradient; 10-15 min, A: 40%, B: 60%). The flow rate was 1.0 ml/min. The detection wavelength was set at 310 nm. The method was used to determine the plasma concentration time profiles of Py-Im polyamides after intravenous injection.  相似文献   
200.
WSX-1 is the alpha subunit of the IL-27R complex expressed by T, B, NK/NKT cells, as well as macrophages and dendritic cells (DCs). Although it has been shown that IL-27 has both stimulatory and inhibitory effects on T cells, little is known on the role of IL-27/WSX-1 on DCs. LPS stimulation of splenic DCs in vivo resulted in prolonged CD80/CD86 expression on WSX-1-deficient DCs over wild-type DCs. Upon LPS stimulation in vitro, WSX-1-deficient DCs expressed Th1-promoting molecules higher than wild-type DCs. In an allogeneic MLR assay, WSX-1-deficient DCs were more potent than wild-type DCs in the induction of proliferation of and IFN-gamma production by responder cell proliferation. When cocultured with purified NK cells, WSX-1-deficient DCs induced higher IFN-gamma production and killing activity of NK cells than wild-type DCs. As such, Ag-pulsed WSX-1-deficient DCs induced Th1-biased strong immune responses over wild-type DCs when transferred in vivo. WSX-1-deficient DCs were hyperreactive to LPS stimulation as compared with wild-type DCs by cytokine production. IL-27 suppressed LPS-induced CD80/86 expression and cytokine production by DCs in vitro. Thus, our study demonstrated that IL-27/WSX-1 signaling potently down-regulates APC function and Th1-promoting function of DCs to modulate overall immune responses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号