首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2529篇
  免费   172篇
  国内免费   1篇
  2702篇
  2021年   16篇
  2020年   12篇
  2019年   13篇
  2018年   31篇
  2017年   15篇
  2016年   35篇
  2015年   45篇
  2014年   59篇
  2013年   218篇
  2012年   97篇
  2011年   97篇
  2010年   68篇
  2009年   68篇
  2008年   120篇
  2007年   130篇
  2006年   133篇
  2005年   140篇
  2004年   133篇
  2003年   136篇
  2002年   116篇
  2001年   59篇
  2000年   69篇
  1999年   56篇
  1998年   39篇
  1997年   32篇
  1996年   42篇
  1995年   39篇
  1994年   22篇
  1993年   29篇
  1992年   56篇
  1991年   44篇
  1990年   47篇
  1989年   44篇
  1988年   31篇
  1987年   34篇
  1986年   26篇
  1985年   16篇
  1984年   25篇
  1983年   39篇
  1982年   31篇
  1981年   24篇
  1980年   19篇
  1979年   14篇
  1978年   21篇
  1977年   21篇
  1976年   15篇
  1975年   16篇
  1973年   14篇
  1969年   19篇
  1968年   12篇
排序方式: 共有2702条查询结果,搜索用时 15 毫秒
991.
The p6 region of HIV-1 Gag contains two late (L) domains, PTAP and LYPXnL, that bind the cellular proteins Tsg101 and Alix, respectively. These interactions are thought to recruit members of the host fission machinery (ESCRT) to facilitate HIV-1 release. Here we report a new role for the p6-adjacent nucleocapsid (NC) domain in HIV-1 release. The mutation of basic residues in NC caused a pronounced decrease in virus release from 293T cells, although NC mutant Gag proteins retained the ability to interact with cellular membranes and RNAs. Remarkably, electron microscopy analyses of these mutants revealed arrested budding particles at the plasma membrane, analogous to those seen following the disruption of the PTAP motif. This result indicated that the basic residues in NC are important for virus budding. When analyzed in physiologically more relevant T-cell lines (Jurkat and CEM), NC mutant viruses remained tethered to the plasma membrane or to each other by a membranous stalk, suggesting membrane fission impairment. Remarkably, NC mutant release defects were alleviated by the coexpression of a Gag protein carrying a wild-type (WT) NC domain but devoid of all L domain motifs and by providing alternative access to the ESCRT pathway, through the in trans expression of the ubiquitin ligase Nedd4.2s. Since NC mutant Gag proteins retained the interaction with Tsg101, we concluded that NC mutant budding arrests might have resulted from the inability of Gag to recruit or utilize members of the host ESCRT machinery that act downstream of Tsg101. Together, these data support a model in which NC plays a critical role in HIV-1 budding.  相似文献   
992.
Perlecan, a secreted heparan sulfate proteoglycan, is a major component of the vascular basement membrane and participates in angiogenesis. Here, we used small interference RNA-mediated knockdown of perlecan expression to investigate the regulatory function of perlecan in the growth of human vascular endothelial cells. Basic fibroblast growth factor (bFGF)-induced ERK phosphorylation and cyclin D1 expression were unchanged by perlecan deficiency in endothelial cells; however, perlecan deficiency inhibited the Rb protein phosphorylation and DNA synthesis induced by bFGF. By contrast to cytoplasmic localization of the cyclin-dependent kinase inhibitor p27 in control endothelial cells, p27 was localized in the nucleus and its expression increased in perlecan-deficient cells, which suggests that p27 mediates inhibition of Rb phosphorylation. In addition to the well-characterized function of perlecan as a co-receptor for heparin-binding growth factors such as bFGF, our results suggest that perlecan plays an indispensible role in endothelial cell proliferation and acts through a mechanism that involves subcellular localization of p27.  相似文献   
993.
Vitamin D-24-hydroxylase (CYP24) is one of the enzymes responsible for vitamin D metabolism. CYP24 catalyzes the conversion of 25-hydroxyvitamin D(3) [25(OH)D(3)] to 24,25-dihydroxyvitamin D(3) [24,25(OH)(2)D(3)] in the kidney. CYP24 is also involved in the breakdown of 1alpha,25-dihydroxyvitamin D(3) [1alpha,25(OH)(2)D(3)], the active form of vitamin D(3). In this study, we generated transgenic (Tg) rats constitutively expressing CYP24 gene to investigate the biological role of CYP24 in vivo. Surprisingly, the Tg rats showed a significantly low level of plasma 24,25(OH)(2)D(3). Furthermore, the Tg rats developed albuminuria and hyperlipidemia shortly after weaning. The plasma lipid profile revealed that all lipoprotein fractions were elevated in the Tg rats. Also, the Tg rats showed atherosclerotic lesions in the aorta, which greatly progressed with high-fat and high-cholesterol feeding. These unexpected results suggest that CYP24 is involved in functions other than the regulation of vitamin D metabolism.  相似文献   
994.
B-1 cells, distinguishable from conventional B-2 cells by their cell surface marker, anatomical location, and self-replenishing activity, play an important role in innate immune responses. B-1 cells constitutively express the IL-5R alpha-chain (IL-5Ralpha) and give rise to Ab-producing cells in response to various stimuli, including IL-5 and LPS. Here we report that the IL-5/IL-5R system plays an important role in maintaining the number and the cell size as well as the functions of mature B-1 cells. The administration of anti-IL-5 mAb into wild-type mice, T cell-depleted mice, or mast cell-depleted mice resulted in reduction in the total number and cell size of B-1 cells to an extent similar to that of IL-5Ralpha-deficient (IL-5Ralpha(-/-)) mice. Cell transfer experiments have demonstrated that B-1 cell survival in wild-type mice and homeostatic proliferation in recombination-activating gene 2-deficient mice are impaired in the absence of IL-5Ralpha. IL-5 stimulation of wild-type B-1 cells, but not IL-5Ralpha(-/-) B-1 cells, enhances CD40 expression and augments IgM and IgG production after stimulation with anti-CD40 mAb. Enhanced IgA production in feces induced by the oral administration of LPS was not observed in IL-5Ralpha(-/-) mice. Our results illuminate the role of IL-5 in the homeostatic proliferation and survival of mature B-1 cells and in IgA production in the mucosal tissues.  相似文献   
995.
Juvenile development ofSuggrundus meerdervoortii was described, based on twelve specimens (12.9–43.8 mm SL) collected from off Yamagata Prefecture, Japan Sea. Two exterior openings in the lateral line scales were completed at ca. 35 mm SL, with the interopercular flap and iris lappet being visible at ca. 44 mm SL, these all being useful taxonomic characters. In juveniles and additional young and adult specimens (ca. 70–191 mm SL), the proportions of head length, snout length, orbital diameter, caudal peduncle depth and caudal fin length decreased with growth; interorbital width decreased rapidly until ca. 70 mm SL, but more or less stabilised thereafter (70–191 mm SL).  相似文献   
996.
Naturally transformable bacteria recombine internalized ssDNA with a homologous resident duplex (chromosomal transformation) or complementary internalized ssDNAs (plasmid or viral transformation). Bacillus subtilis competence-induced DprA, RecA, SsbB, and SsbA proteins are involved in the early processing of the internalized ssDNA, with DprA physically interacting with RecA. SsbB and SsbA bind and melt secondary structures in ssDNA but limit RecA loading onto ssDNA. DprA binds to ssDNA and facilitates partial dislodging of both single-stranded binding (SSB) proteins from ssDNA. In the absence of homologous duplex DNA, DprA does not significantly increase RecA nucleation onto protein-free ssDNA. DprA facilitates RecA nucleation and filament extension onto SsbB-coated or SsbB plus SsbA-coated ssDNA. DprA facilitates RecA-mediated DNA strand exchange in the presence of both SSB proteins. DprA, which plays a crucial role in plasmid transformation, anneals complementary strands preferentially coated by SsbB to form duplex circular plasmid molecules. Our results provide a mechanistic framework for conceptualizing the coordinated events modulated by SsbB in concert with SsbA and DprA that are crucial for RecA-dependent chromosomal transformation and RecA-independent plasmid transformation.  相似文献   
997.
The 4-hydroxyphenylacetate (4HPA) 3-monooxygenase is involved in the initial step of the 4HPA degradation pathway and catalyzes 4HPA hydroxylation to 3,4-dihydroxyphenylacetate. This enzyme consists of two components, an oxygenase (HpaB) and a reductase (HpaC). To understand the structural basis of the catalytic mechanism of HpaB, crystal structures of HpaB from Thermus thermophilus HB8 were determined in three states: a ligand-free form, a binary complex with FAD, and a ternary complex with FAD and 4HPA. Structural analysis revealed that the binding and dissociation of flavin are accompanied by conformational changes of the loop between beta5 and beta6 and of the loop between beta8 and beta9, leading to preformation of part of the substrate-binding site (Ser-197 and Thr-198). The latter loop further changes its conformation upon binding of 4HPA and obstructs the active site from the bulk solvent. Arg-100 is located adjacent to the putative oxygen-binding site and may be involved in the formation and stabilization of the C4a-hydroperoxyflavin intermediate.  相似文献   
998.
Extracellular signal-regulated kinase 5 (ERK5), a member of the mitogen-activated protein kinase family, plays an important role in growth factor signaling to the nucleus. However, molecular mechanisms regulating subcellular localization of ERK5 have remained unclear. Here, we show that nucleocytoplasmic shuttling of ERK5 is regulated by a bipartite nuclear localization signal-dependent nuclear import mechanism and a CRM1-dependent nuclear export mechanism. Our results show that the N-terminal half of ERK5 binds to the C-terminal half and that this binding is necessary for nuclear export of ERK5. They further show that the activating phosphorylation of ERK5 by MEK5 results in the dissociation of the binding between the N- and C-terminal halves and thus inhibits nuclear export of ERK5, causing its nuclear import. These results reveal the mechanism by which the activating phosphorylation of ERK5 induces its nuclear import and suggest a novel example of a phosphorylation-dependent control mechanism for nucleocytoplasmic shuttling of proteins.  相似文献   
999.
The unbinding force of Zif268-DNA complex has been studied by atomic force microscopy (AFM). DNA and Zif268 were covalently immobilized on the surfaces of an AFM tip and glass substrate, respectively. Confocal microscopy was used to confirm the successful immobilization of DNA. Because of the complexity of the protein-DNA interaction, parallel experiments were designed to discriminate specific interactions. For such experiments, a typical unbinding force of a single Zif268-DNA complex (approx 550 pN at 40 nN/s force loading rate) was evaluated.  相似文献   
1000.
Ionic and osmotic effects of salinity on the ultrastructure of chloroplasts in salt-treated rice seedlings were investigated. After rice seedlings were grown in hydroponic culture for three weeks, they were treated with NaCl and polyethylene glycol (PEG) 4000 both at a water potential of -1.0 MPa for 3 days. The most notable difference in ultrastructural change between NaCl and PEG treatment was observed in the damage in chloroplast membranes. NaCl induced swelling of thylakoids and caused only a slight destruction of the chloroplast envelope. PEG caused severe destruction of the chloroplast envelope compared with NaCl, however thylakoids did not swell. Our observations suggested that in salt-treated rice plants, the ionic effects induced swelling of thylakoids and the osmotic effects caused the destruction of chloroplast envelope.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号