首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   260篇
  免费   15篇
  2022年   2篇
  2021年   6篇
  2019年   2篇
  2018年   2篇
  2016年   5篇
  2015年   8篇
  2014年   7篇
  2013年   10篇
  2012年   4篇
  2011年   8篇
  2010年   8篇
  2009年   3篇
  2008年   8篇
  2007年   11篇
  2006年   12篇
  2005年   16篇
  2004年   16篇
  2003年   20篇
  2002年   10篇
  2001年   13篇
  2000年   13篇
  1999年   10篇
  1998年   1篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1993年   2篇
  1992年   11篇
  1991年   4篇
  1990年   7篇
  1989年   2篇
  1988年   8篇
  1987年   1篇
  1986年   1篇
  1985年   5篇
  1984年   3篇
  1983年   3篇
  1982年   3篇
  1981年   3篇
  1980年   1篇
  1979年   4篇
  1978年   2篇
  1977年   2篇
  1975年   2篇
  1974年   1篇
  1973年   1篇
  1970年   3篇
  1969年   3篇
  1966年   1篇
  1965年   1篇
排序方式: 共有275条查询结果,搜索用时 289 毫秒
151.
We recently found a novel cell-cell adhesion system at cadherin-based adherens junctions (AJs), consisting at least of nectin, a Ca(2+)-independent homophilic immunoglobulin-like adhesion molecule, and afadin, an actin filament-binding protein that connects nectin to the actin cytoskeleton. Nectin is associated with cadherin through afadin and alpha-catenin. The cadherin-catenin system increases the concentration of nectin at AJs in an afadin-dependent manner. Nectin constitutes a family consisting of three members: nectin-1, -2, and -3. Nectin-1 serves as an entry and cell-cell spread mediator of herpes simplex virus type 1 (HSV-1). We studied here a role of the interaction of nectin-1alpha with afadin in entry and/or cell-cell spread of HSV-1. By the use of cadherin-deficient L cells overexpressing the full length of nectin-1alpha capable of interacting with afadin and L cells overexpressing a truncated form of nectin-1alpha incapable of interacting with afadin, we found that the interaction of nectin-1alpha with afadin increased the efficiency of cell-cell spread, but not entry, of HSV-1. This interaction did not affect the binding to nectin-1alpha of glycoprotein D, a viral component mediating entry of HSV-1 into host cells. Furthermore, the cadherin-catenin system increased the efficiency of cell-cell spread of HSV-1, although it also increased the efficiency of entry of HSV-1. It is likely that efficient cell-cell spread of HSV-1 is caused by afadin-dependent concentrated localization of nectin-1alpha at cadherin-based AJs.  相似文献   
152.
Aspartate aminotransferase from an extremely thermophilic bacterium, Thermus thermophilus HB8 (ttAspAT), has been believed to be specific for an acidic substrate. However, stepwise introduction of mutations in the active-site residues finally changed its substrate specificity to that of a dual-substrate enzyme. The final mutant, [S15D, T17V, K109S, S292R] ttAspAT, is active toward both acidic and hydrophobic substrates. During the course of stepwise mutation, the activities toward acidic and hydrophobic substrates changed independently. The introduction of a mobile Arg292* residue into ttAspAT was the key step in the change to a "dual-substrate" enzyme. The substrate recognition mechanism of this thermostable "dual-substrate" enzyme was confirmed by X-ray crystallography. This work together with previous studies on various enzymes suggest that this unique "dual-substrate recognition" mechanism is a feature of not only aminotransferases but also other enzymes.  相似文献   
153.
4-Amino-4-deoxychorismate lyase (ADCL) is a member of the fold-type IV of PLP dependent enzymes that converts 4-amino-4-deoxychorismate (ADC) to p-aminobenzoate and pyruvate. The crystal structure of ADCL from Escherichia coli has been solved using MIR phases in combination with density modification. The structure has been refined to an R-factor of 20.6% at 2.2 A resolution. The enzyme is a homo dimer with a crystallographic twofold axis, and the polypeptide chain is folded into small and large domains with an interdomain loop. The coenzyme, pyridoxal 5'-phosphate, resides at the domain interface, its re-face facing toward the protein. Although the main chain folding of the active site is homologous to those of D-amino acid and L-branched-chain amino acid aminotransferases, no residues in the active site are conserved among them except for Arg59, Lys159, and Glu193, which directly interact with the coenzyme and play critical roles in the catalytic functions. ADC was modeled into the active site of the unliganded enzyme on the basis of the X-ray structures of the unliganded and liganded forms in the D-amino acid and L-branched-chain amino acid aminotransferases. According to this model, the carboxylates of ADC are recognized by Asn256, Arg107, and Lys97, and the cyclohexadiene moiety makes van der Waals contact with the side chain of Leu258. ADC forms a Schiff base with PLP to release the catalytic residue Lys159, which forms a hydrogen bond with Thr38. The neutral amino group of Lys159 eliminates the a-proton of ADC to give a quinonoid intermediate to release a pyruvate in accord with the proton transfer from Thr38 to the olefin moiety of ADC.  相似文献   
154.
155.
We describe the development of a new type of DNA array chip that utilizes electrochemical reactions and a novel method of simultaneously identifying multiple genetic mutations on an array chip. The electrochemical array (ECA) uses a threading intercalator specific to double-stranded nucleotides, ferrocenylnaphthalene diimide (FND), as the indicator. ECA does not require target labeling, and the equipment is simple, durable and less expensive. The simultaneous multiple mutation detection (SMMD) system using an ECA chip and FND utilizes an enzyme to simultaneously distinguish several genetic mutations such as single nucleotide polymorphism (SNP), insertion, deletion, translocation and short tandem repeat. We examined this SMMD system using an ECA chip, by detecting seven different mutations on the lipoprotein lipase (LPL) gene for 50 patients in a blind test. It turned out that all the results obtained were concordant with the sequencing results, demonstrating that this system is a powerful tool for clinical applications.  相似文献   
156.
Among roughly one thousand incidents of shigellosis annually in Japan, approximately 70% of the cases are estimated to be associated with overseas travel. However, at the end of 2001, reports of domestically acquired Shigella sonnei infections suddenly increased. We report here the first multi-prefectural outbreak of Shigella sonnei infections linked to the consumption of imported oysters in Japan at the end of 2001. Isolates of S. sonnei from patients epidemiologically linked to eating contaminated oysters and from the imported oysters themselves showed an indistinguishable pulsed-field gel electrophoresis pattern and drug resistance pattern.  相似文献   
157.
158.
Oxidized low-density lipoprotein (oxLDL) modifies macrophage inflammatory responses in the pathogenesis of atherosclerosis. In the present study, we focused on gamma-glutamylcysteine synthetase (gamma-GCS), a rate limiting enzyme of glutathione synthesis, and examined whether inflammatory stimulation of gamma-GCS gene in macrophages by lipopolysaccharide (LPS) is modified when the cells were exposed to oxLDL. We found that the nuclear factor-kappaB (NF-kappaB)-mediated induction of gamma-GCS by LPS (100 ng/ml) was suppressed by a 48-h pre-treatment with oxLDL (50 micro/ml), and this was due to a decrease in the DNA-binding activity of NF-kappaB. Furthermore, pre-treatment with oxLDL caused a carbonylation of NF-kappaB subunit p65. With alpha-tocopherol, the oxLDL-induced carbonylation of proteins decreased with a restoration of DNA-binding activity of NF-kappaB. Together, these indicate that oxidative modification of NF-kappaB suppresses LPS-induced expression of gamma-GCS gene in ox-LDL-treated cells, suggesting an implication of oxLDL-induced modulation of NF-kappaB signaling with atherosclerosis.  相似文献   
159.
The notion of "ground-state destabilization" has been well documented in enzymology. It is the unfavourable interaction (strain) in the enzyme-substrate complex, and increases the k(cat) value without changing the k(cat)/K(m) value. During the course of the investigation on the reaction mechanism of aspartate aminotransferase (AAT), we found another type of strain that is crucial for catalysis: the strain of the distorted internal aldimine in the unliganded enzyme. This strain raises the energy level of the starting state (E+S), thereby reducing the energy gap between E+S and ES(++) and increasing the k(cat)/K(m) value. Further analysis on the reaction intermediates showed that the Michaelis complex of AAT with aspartate contains strain energy due to an unfavourable interaction between the main chain carbonyl oxygen and the Tyr225-aldimine hydrogen-bonding network. This belongs to the classical type of strain. In each case, the strain is reflected in the pK(a) value of the internal aldimine. In the historical explanation of the reaction mechanism of AAT, the shifts in the aldimine pK(a) have been considered to be the driving forces for the proton transfer during catalysis. However, the above findings indicate that the true driving forces are the strain energy inherent to the respective intermediates. We describe here how these strain energies are generated and are used for catalysis, and show that variations in the aldimine pK(a) during catalysis are no more than phenomenological results of adjusting the energy levels of the reaction intermediates for efficient catalysis.  相似文献   
160.
Argininosuccinate synthetase reversibly catalyzes the ATP-dependent condensation of a citrulline with an aspartate to give argininosuccinate. The structures of the enzyme from Thermus thermophilus HB8 complexed with intact ATP and substrates (citrulline and aspartate) and with AMP and product (argininosuccinate) have been determined at 2.1- and 2.0-A resolution, respectively. The enzyme does not show the ATP-induced domain rotation observed in the enzyme from Escherichia coli. In the enzyme-substrate complex, the reaction sites of ATP and the bound substrates are adjacent and are sufficiently close for the reaction to proceed without the large conformational change at the domain level. The mobility of the triphosphate group in ATP and the side chain of citrulline play an important role in the catalytic action. The protonated amino group of the bound aspartate interacts with the alpha-phosphate of ATP and the ureido group of citrulline, thus stimulating the adenylation of citrulline. The enzyme-product complex explains how the citrullyl-AMP intermediate is bound to the active site. The stereochemistry of the catalysis of the enzyme is clarified on the basis of the structures of tAsS (argininosuccinate synthetase from T. thermophilus HB8) complexes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号