首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10653篇
  免费   631篇
  国内免费   1篇
  2021年   114篇
  2020年   59篇
  2019年   84篇
  2018年   123篇
  2017年   118篇
  2016年   194篇
  2015年   276篇
  2014年   323篇
  2013年   595篇
  2012年   496篇
  2011年   524篇
  2010年   302篇
  2009年   325篇
  2008年   508篇
  2007年   497篇
  2006年   441篇
  2005年   478篇
  2004年   451篇
  2003年   443篇
  2002年   421篇
  2001年   390篇
  2000年   410篇
  1999年   301篇
  1998年   138篇
  1997年   109篇
  1996年   73篇
  1995年   90篇
  1994年   80篇
  1993年   94篇
  1992年   222篇
  1991年   219篇
  1990年   226篇
  1989年   207篇
  1988年   198篇
  1987年   169篇
  1986年   129篇
  1985年   123篇
  1984年   127篇
  1983年   98篇
  1982年   88篇
  1981年   72篇
  1979年   98篇
  1978年   73篇
  1977年   79篇
  1976年   65篇
  1975年   66篇
  1974年   66篇
  1973年   56篇
  1972年   68篇
  1971年   52篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
811.
Epiregulin (EPR), a novel member of epidermal growth factor (EGF) family, is a ligand for ErbB-1 and ErbB-4 receptors. The binding affinity of EPR for the receptors is lower than those of other EGF-family ligands. The solution structure of EPR was determined using two-dimensional nuclear magnetic resonance spectroscopy. The secondary structure in the C-terminal domain of EPR is different from other EGF-family ligands because of the lack of hydrogen bonds. The structural difference in the C-terminal domain may provide an explanation for the reduced binding affinity of EPR to the ErbB receptors.  相似文献   
812.
Minoda A  Sonoike K  Okada K  Sato N  Tsuzuki M 《FEBS letters》2003,553(1-2):109-112
Photosystem (PS) II activity of a sulfoquinovosyl diacylglycerol (SQDG)-deficient mutant (hf-2) of Chlamydomonas was partially decreased compared with that of wild-type. The susceptibility to 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) was also modified in the mutant. Photometric measurements in the isolated thylakoid membranes of hf-2 revealed that the lowered activity in the mutant was derived from a decrease in the efficiency of the electron donation from water to tyrosine Z, not from the efficiency of the electron transport from Q(A) to Q(B). This result was confirmed by the decay kinetics of chlorophyll fluorescence determined in vivo. We conclude that SQDG contributes to maintaining the conformation of PSII complexes, particularly that of D1 polypeptides, which are necessary for maximum activities in Chlamydomonas.  相似文献   
813.
Voltage-dependent ion channels control changes in ion permeability in response to membrane potential changes. The voltage sensor in channel proteins consists of the highly positively charged segment, S4, and the negatively charged segments, S2 and S3. The process involved in the integration of the protein into the membrane remains to be elucidated. In this study, we used in vitro translation and translocation experiments to evaluate interactions between residues in the voltage sensor of a hyperpolarization-activated potassium channel, KAT1, and their effect on the final topology in the endoplasmic reticulum (ER) membrane. A D95V mutation in S2 showed less S3-S4 integration into the membrane, whereas a D105V mutation allowed S4 to be released into the ER lumen. These results indicate that Asp(95) assists in the membrane insertion of S3-S4 and that Asp(105) helps in preventing S4 from being releasing into the ER lumen. The charge reversal mutation, R171D, in S4 rescued the D105R mutation and prevented S4 release into the ER lumen. A series of constructs containing different C-terminal truncations of S4 showed that Arg(174) was required for correct integration of S3 and S4 into the membrane. Interactions between Asp(105) and Arg(171) and between negative residues in S2 or S3 and Arg(174) may be formed transiently during membrane integration. These data clarify the role of charged residues in S2, S3, and S4 and identify posttranslational electrostatic interactions between charged residues that are required to achieve the correct voltage sensor topology in the ER membrane.  相似文献   
814.
A G protein-coupled receptor responsive to bile acids   总被引:6,自引:0,他引:6  
So far some nuclear receptors for bile acids have been identified. However, no cell surface receptor for bile acids has yet been reported. We found that a novel G protein-coupled receptor, TGR5, is responsive to bile acids as a cell-surface receptor. Bile acids specifically induced receptor internalization, the activation of extracellular signal-regulated kinase mitogen-activated protein kinase, the increase of guanosine 5'-O-3-thio-triphosphate binding in membrane fractions, and intracellular cAMP production in Chinese hamster ovary cells expressing TGR5. Our quantitative analyses for TGR5 mRNA showed that it was abundantly expressed in monocytes/macrophages in human and rabbit. Treatment with bile acids was found to suppress the functions of rabbit alveolar macrophages including phagocytosis and lipopolysaccharide-stimulated cytokine productions. We prepared a monocytic cell line expressing TGR5 by transfecting a TGR5 cDNA into THP-1 cells that did not express TGR5 originally. Treatment with bile acids suppressed the cytokine productions in the THP-1 cells expressing TGR5, whereas it did not influence those in the original THP-1 cells, suggesting that TGR5 is implicated in the suppression of macrophage functions by bile acids.  相似文献   
815.
We have identified a novel RING-B-box-coiled-coil (RBCC) protein (MAIR for macrophage-derived apoptosis-inducing RBCC protein) that consists of an N-terminal RING finger, followed by a B-box zinc finger, a coiled-coil domain, and a B30.2 domain. MAIR mRNA was expressed widely in mouse tissues and was induced by macrophage colony-stimulating factor in murine peritoneal and bone marrow macrophages. MAIR protein initially showed a granular distribution predominantly in the cytoplasm. The addition of zinc to transfectants containing MAIR cDNA as part of a heavy metal-inducible vector caused apoptosis of the cells characterized by cell fragmentation; a reduction in mitochondrial membrane potential; activation of caspase-7, -8, and -9, but not caspase-3; and DNA degradation. We also found that the RING finger and coiled-coil domains were required for MAIR activity by analysis with deletion mutants.  相似文献   
816.
817.
Two novel macromolecular MRI contrast agents based upon generation-6 polyamidoamine dendrimers (G6) of presumed similar molecular size, but of different molecular weight, were compared in terms of their blood retention, tissue distribution, and renal excretion. Two G6s with either ammonia core (G6A) or with ethylenediamine core (G6E), which possessed 192 and 256 exterior primary amino groups, respectively, were used. These dendrimers were reacted with 2-(p-isothiocyanatobenzyl)-6-methyl-diethylenetriaminepentaacetic acid (1B4M). The G6--1B4M conjugates were reacted with (153)Gd for studying biodistribution and blood clearance or Gd(III) for the MRI study. 3D-micro-MR angiography of the mice were taken with injection of 0.033 mmol of Gd/kg of G6A--(1B4M-Gd)(192) or G6E--(1B4M-Gd)(256) using a 1.5-T superconductive MRI unit. Although numerous fine vessels of approximately 100 microm diameter were visualized on subtracted 3D-MR-angiography with both G6A--(1B4M-Gd)(192) and G6E--(1B4M-Gd)(256), (153)Gd-labeled saturated G6E-(1B4M)(256) remained in the blood significantly more than (153)Gd-labeled saturated G6A--(1B4M)(192) at later than 15 min postinjection (p < 0.01). In addition, G6E--(1B4M-Gd)(256) visualized these finer vessels longer than G6A--(1B4M-Gd)(192). The G6A--(1B4M-Gd)(192) showed higher signal intensity in the kidney on the dynamic MR images and brighter kidney images than G6E--(1B4M-Gd)(256). In conclusion, the G6A--(1B4M-Gd)(192) was observed to go through glomerular filtration more efficiently than G6E--(1B4M-Gd)(256) resulting faster clearance from the blood and higher renal accumulation, even though both of G6--1B4M conjugates have almost similar molecular size and same chemical structure. In terms of the ability of intravascular contrast agents, G6E--(1B4M-Gd)(256) was better due to more Gd(III) atoms per molecule and longer retention in the circulation than G6A--(1B4M-Gd)(192).  相似文献   
818.
The Rab3 small G protein family consists of four members, Rab3A, -3B, -3C, and -3D. Of these members, Rab3A regulates Ca(2+)-dependent neurotransmitter release. These small G proteins are activated by Rab3 GDP/GTP exchange protein (Rab3 GEP). To determine the function of Rab3 GEP during neurotransmitter release, we have knocked out Rab3 GEP in mice. Rab3 GEP-/- mice developed normally but died immediately after birth. Embryos at E18.5 showed no evoked action potentials of the diaphragm and gastrocnemius muscles in response to electrical stimulation of the phrenic and sciatic nerves, respectively. In contrast, axonal conduction of the spinal cord and the phrenic nerve was not impaired. Total numbers of synaptic vesicles, especially those docked at the presynaptic plasma membrane, were reduced at the neuromuscular junction approximately 10-fold compared with controls, whereas postsynaptic structures and functions appeared normal. Thus, Rab3 GEP is essential for neurotransmitter release and probably for formation and trafficking of the synaptic vesicles.  相似文献   
819.
ADP-ribosylation factors, a family of small GTPases, are believed to be key regulators of intracellular membrane traffic. However, many biochemical in vitro experiments have led to different models for their involvement in various steps of vesicular transport, and their precise role in living cells is still unclear. We have taken advantage of the powerful yeast genetic system and screened for temperature-sensitive (ts) mutants of the ARF1 gene from Saccharomyces cerevisiae. By random mutagenesis of the whole open reading frame of ARF1 by error-prone PCR, we isolated eight mutants and examined their phenotypes. arf1 ts mutants showed a variety of transport defects and morphological alterations in an allele-specific manner. Furthermore, intragenic complementation was observed between certain pairs of mutant alleles, both for cell growth and intracellular transport. These results demonstrate that the single Arf1 protein is indeed involved in many different steps of intracellular transport in vivo and that its multiple roles may be dissected by the mutant alleles we constructed.  相似文献   
820.
It is reported that the stay in the space develops anemia, thrombocytopenia, and altered function and structure of red blood cell. The mechanism of these abnormalities was not clarified yet. Therefore, it is necessary to elucidate the mechanism of the effect of the gravity change on the thrombocytopoiesis, which plays the important role for the hemostasis, using animal models. The cloning of thrombopoietin (TPO), followed by the analysis of TPO and c-mpl (its cellular receptor) knockout mice confirmed its role as the primary regulator of thrombopoiesis. TPO has been shown to stimulate both megakaryocyte colony growth from marrow progenitor cells and the maturation of immature megakaryocyte to form functional platelet. This process includes the massive cytoskeletal rearrangement, such as proplatelet formation and fragmentation of proplatelet. In this study we have focused on the thrombopoiesis in mice those were exposed to gravity change by parabolic flight (PF).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号