首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59篇
  免费   4篇
  2021年   1篇
  2017年   1篇
  2016年   4篇
  2013年   3篇
  2012年   5篇
  2011年   3篇
  2010年   1篇
  2009年   3篇
  2008年   3篇
  2007年   3篇
  2006年   3篇
  2005年   2篇
  2004年   5篇
  2003年   3篇
  2002年   3篇
  2001年   1篇
  2000年   4篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1990年   1篇
  1985年   4篇
  1984年   1篇
  1980年   2篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有63条查询结果,搜索用时 32 毫秒
21.
22.
23.
The SARS-CoV-2 pandemic highlights the need for a detailed molecular understanding of protective antibody responses. This is underscored by the emergence and spread of SARS-CoV-2 variants, including Alpha (B.1.1.7) and Delta (B.1.617.2), some of which appear to be less effectively targeted by current monoclonal antibodies and vaccines. Here we report a high resolution and comprehensive map of antibody recognition of the SARS-CoV-2 spike receptor binding domain (RBD), which is the target of most neutralizing antibodies, using computational structural analysis. With a dataset of nonredundant experimentally determined antibody-RBD structures, we classified antibodies by RBD residue binding determinants using unsupervised clustering. We also identified the energetic and conservation features of epitope residues and assessed the capacity of viral variant mutations to disrupt antibody recognition, revealing sets of antibodies predicted to effectively target recently described viral variants. This detailed structure-based reference of antibody RBD recognition signatures can inform therapeutic and vaccine design strategies.  相似文献   
24.
Summary Complete plant submergence for 6 or 9 days at 20 days after transplanting effected the same decrease in grain yield as submergence for 12 days at 40 days after transplanting. With increasing duration of submergence, tiller number, green leaves and dry weight of all varieties tested decreased. The decrease was less in the flood tolerant variety FR 13A than in other varieties. Contents of reducing sugars and amylase activity also decreased with increasing duration of submergence. The reducing sugar contents and amylase activity were higher and peroxidase activity was lower in flood tolerant variety FR 13A than in other varieties. The N contents increased and P and K contents decreased with duration of submergence.  相似文献   
25.

Purpose

(S)-4-(3-[18F]Fluoropropyl)-L-glutamic acid (18F-FSPG) is a novel radiopharmaceutical for Positron Emission Tomography (PET) imaging. It is a glutamate analogue that can be used to measure xC- transporter activity. This study was performed to assess the feasibility of 18F-FSPG for imaging orthotopic brain tumors in small animals and the translation of this approach in human subjects with intracranial malignancies.

Experimental Design

For the small animal study, GS9L glioblastoma cells were implanted into brains of Fischer rats and studied with 18F-FSPG, the 18F-labeled glucose derivative 18F-FDG and with the 18F-labeled amino acid derivative 18F-FET. For the human study, five subjects with either primary or metastatic brain cancer were recruited (mean age 50.4 years). After injection of 300 MBq of 18F-FSPG, 3 whole-body PET/Computed Tomography (CT) scans were obtained and safety parameters were measured. The three subjects with brain metastases also had an 18F-FDG PET/CT scan. Quantitative and qualitative comparison of the scans was performed to assess kinetics, biodistribution, and relative efficacy of the tracers.

Results

In the small animals, the orthotopic brain tumors were visualized well with 18F-FSPG. The high tumor uptake of 18F-FSPG in the GS9L model and the absence of background signal led to good tumor visualization with high contrast (tumor/brain ratio: 32.7). 18F-FDG and 18F-FET showed T/B ratios of 1.7 and 2.8, respectively. In the human pilot study, 18F-FSPG was well tolerated and there was similar distribution in all patients. All malignant lesions were positive with 18F-FSPG except for one low-grade primary brain tumor. In the 18F-FSPG-PET-positive tumors a similar T/B ratio was observed as in the animal model.

Conclusions

18F-FSPG is a novel PET radiopharmaceutical that demonstrates good uptake in both small animal and human studies of intracranial malignancies. Future studies on larger numbers of subjects and a wider array of brain tumors are planned.

Trial Registration

ClinicalTrials.gov NCT01186601  相似文献   
26.
Two-month-old seedlings of Bruguiera parvifora were treated with varying levels of NaCl (100, 200 and 400 mM) under hydroponic culture. Total proteins were extracted from leaves of control and NaCl treated plants after 7, 14, 30 and 45 d of treatment and analysed by SDS-PAGE. As visualized from SDS-PAGE, the intensity of several protein bands of molecular weight 17, 23, 32, 33 and 34 kDa decreased as a result of NaCl treatment. The degree of decrease of these protein bands seemed to be roughly proportional to the external NaCl concentration. The most obvious change concerned a 23 kDa-polypeptide (SSP-23), which disappeared after 45 d treatment in 400 mM NaCl. Moreover, the SSP-23 protein, which disappeared in B. parviflora under salinity stress, reappeared when these salinized seedlings were desalinized. These observations suggest the possible involvement of these polypeptides for osmotic adjustment under salt stress. NaCl stress also caused an increase in the activity of both acid and alkaline protease. The increasing activity of proteases functions as a signal of salt stress in B. parviflora, which induces the reduction of protein level.  相似文献   
27.
28.
The pharmaceutical and agro-biotechnology industries have been confronted by dwindling product pipelines and rapid developments in life sciences, thus demanding a strategic rethink of conventional research and development. Despite offering both industries a solution to the pipeline problem, the life sciences have also brought complex regulatory challenges for firms. In this paper, we comment on the response of these industries to the life science trajectory, in the context of maturing conventional small-molecule product pipelines and routes to market. The challenges of managing transition from maturity to new high-value-added innovation models are addressed. Furthermore, we argue that regulation plays a crucial role in shaping the innovation systems of both industries, and as such, we suggest potentially useful changes to the current regulatory system.  相似文献   
29.
The protozoan parasite Leishmania is the causative agent of serious human infections worldwide. The parasites alternate between insect and vertebrate hosts and cause disease by invading macrophages, where they replicate. Parasites lacking the ferrous iron transporter LIT1 cannot grow intracellularly, indicating that a plasma membrane-associated mechanism for iron uptake is essential for the establishment of infections. Here, we identify and functionally characterize a second member of the Leishmania iron acquisition pathway, the ferric iron reductase LFR1. The LFR1 gene is up-regulated under iron deprivation and accounts for all the detectable ferric reductase activity exposed on the surface of Leishmania amazonensis. LFR1 null mutants grow normally as promastigote insect stages but are defective in differentiation into the vertebrate infective forms, metacyclic promastigotes and amastigotes. LFR1 overexpression partially restores the abnormal morphology of infective stages but markedly reduces parasite viability, precluding its ability to rescue LFR1 null replication in macrophages. However, LFR1 overexpression is not toxic for amastigotes lacking the ferrous iron transporter LIT1 and rescues their growth defect. In addition, the intracellular growth of both LFR1 and LIT1 null parasites is rescued in macrophages loaded with exogenous iron. This indicates that the Fe(3+) reductase LFR1 functions upstream of LIT1 and suggests that LFR1 overexpression results in excessive Fe(2+) production, which impairs parasite viability after intracellular transport by LIT1.  相似文献   
30.
Mittra J  Tait J 《New biotechnology》2012,29(6):709-719
Stratified medicine offers both opportunities and challenges to the conventional business models that drive pharmaceutical R&D. Given the increasingly unsustainable blockbuster model of drug development, due in part to maturing product pipelines, alongside increasing demands from regulators, healthcare providers and patients for higher standards of safety, efficacy and cost-effectiveness of new therapies, stratified medicine promises a range of benefits to pharmaceutical and diagnostic firms as well as healthcare providers and patients. However, the transition from 'blockbusters' to what might now be termed 'niche-busters' will require the adoption of new, innovative business models, the identification of different and perhaps novel types of value along the R&D pathway, and a smarter approach to regulation to facilitate innovation in this area. In this paper we apply the Innogen Centre's interdisciplinary ALSIS methodology, which we have developed for the analysis of life science innovation systems in contexts where the value creation process is lengthy, expensive and highly uncertain, to this emerging field of stratified medicine. In doing so, we consider the complex collaboration, timing, coordination and regulatory interactions that shape business models, value chains and value systems relevant to stratified medicine. More specifically, we explore in some depth two convergence models for co-development of a therapy and diagnostic before market authorisation, highlighting the regulatory requirements and policy initiatives within the broader value system environment that have a key role in determining the probable success and sustainability of these models.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号