首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   597篇
  免费   39篇
  国内免费   3篇
  639篇
  2022年   6篇
  2021年   8篇
  2020年   8篇
  2019年   6篇
  2018年   8篇
  2017年   9篇
  2016年   17篇
  2015年   22篇
  2014年   23篇
  2013年   40篇
  2012年   40篇
  2011年   37篇
  2010年   24篇
  2009年   29篇
  2008年   32篇
  2007年   41篇
  2006年   44篇
  2005年   47篇
  2004年   34篇
  2003年   33篇
  2002年   38篇
  2001年   4篇
  2000年   7篇
  1999年   8篇
  1998年   4篇
  1997年   8篇
  1996年   3篇
  1995年   6篇
  1994年   3篇
  1993年   7篇
  1992年   2篇
  1991年   3篇
  1989年   6篇
  1988年   1篇
  1987年   3篇
  1986年   2篇
  1985年   8篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1981年   3篇
  1980年   4篇
  1979年   2篇
  1977年   2篇
  1975年   1篇
  1971年   1篇
排序方式: 共有639条查询结果,搜索用时 15 毫秒
111.
112.
F1 is a soluble part of FoF1-ATP synthase and performs a catalytic process of ATP hydrolysis and synthesis. The γ subunit, which is the rotary shaft of F1 motor, is composed of N-terminal and C-terminal helices domains, and a protruding Rossman-fold domain located between the two major helices parts. The N-terminal and C-terminal helices domains of γ assemble into an antiparallel coiled-coil structure, and are almost embedded into the stator ring composed of α3β3 hexamer of the F1 molecule. Cyanobacterial and chloroplast γ subunits harbor an inserted sequence of 30 or 39 amino acids length within the Rossman-fold domain in comparison with bacterial or mitochondrial γ. To understand the structure–function relationship of the γ subunit, we prepared a mutant F1-ATP synthase of a thermophilic cyanobacterium, Thermosynechococcus elongatus BP-1, in which the γ subunit is split into N-terminal α-helix along with the inserted sequence and the remaining C-terminal part. The obtained mutant showed higher ATP-hydrolysis activities than those containing the wild-type γ. Contrary to our expectation, the complexes containing the split γ subunits were mostly devoid of the C-terminal helix. We further investigated the effect of post-assembly cleavage of the γ subunit. We demonstrate that insertion of the nick between two helices of the γ subunit imparts resistance to ADP inhibition, and the C-terminal α-helix is dispensable for ATP-hydrolysis activity and plays a crucial role in the assembly of F1-ATP synthase.  相似文献   
113.
The design and synthesis of a novel class of 7-azaspiro[3.5]nonane GPR119 agonists are described. In this series, optimization of the right piperidine N-capping group (R2) and the left aryl group (R3) led to the identification of compound 54g as a potent GPR119 agonist. Compound 54g showed a desirable PK profile in Sprague-Dawley (SD) rats and a favorable glucose lowering effect in diabetic rats.  相似文献   
114.
The 569,750 base pair sequence corresponding to the 28.0–40.1min region on the genetic map of Escherichia coli K-12 (W3110)was determined. This region includes the replication terminusregion and contained at least 549 potential open reading frames.Among them, 160 (29%) were previously reported, 174 (32%) werehomologous to other known genes, 102 (18%) were identical orsimilar to hypothetical genes registered in databases, and theremaining 113 (21%) did not show a significant similarity toany other gene. Of interest was the finding of a large numberof genes and gene clusters in andnear the replication terminationregion which had been thought to be genetically silent. Thoseincludeda cluster of genes for fatty acid ß-oxidation,the third copy of the pot (spermidine/putrescine transport system)gene cluster, the second dpp (dipeptide transport system) operon,the second dsm (anaerobic dimethyl sulfoxide reductase) operon,a cluster of fim (fimbrial) genes anda DNA helicase-like genewith a high molecular weight. In addition, we found the dnaC-and dnaT-like genes in the cryptic prophage, Rac, anda numberof genes originated probably from plasmids.  相似文献   
115.
Abstract The purified MukB protein of Escherichia coli has DNA binding activity and nucleotide binding activity. We have isolated a mutation, mukB1013 , causing a substitution of valine at position 1379 to leucine. This mutant MukB protein was defective for DNA binding, while the ATP binding activity remained unaffected. A truncated MukB protein that is short of 109 amino acids from the C-terminus failed to bind DNA.  相似文献   
116.
Although peroxisomal localization of NADP-linked isocitrate dehydrogenase (Idp) was first demonstrated in Candida tropicalis, the mitochondrial isozyme has not been found in this yeast. Here we report that the presence of mitochondrial Idp in the yeast was demonstrated by screening for its gene with a DNA probe containing conserved sequences of Idps from various organisms. The nucleotide sequence of the gene (CtIDP1) revealed a 1,290-bp open reading frame corresponding to a 430-amino-acid protein with a high similarity to previously reported Idps. Overexpression of CtIDP1 in Saccharomyces cerevisiae gave a high intracellular Idp activity, and the purified recombinant Idp was shown to be a homodimer with a subunit molecular mass of approximately 44 kDa, different from that of peroxisomal Idp (45 kDa) previously purified from C. tropicalis. Western blot analysis of the subcellular fractions from acetate-grown C. tropicalis with polyclonal antibodies raised against the recombinant CtIdp1 showed that the CtIdp1 in C. tropicalis was localized in mitochondria but not in peroxisomes. Similar levels of CtIDP1 mRNA and its protein product were detected in cells grown on glucose, acetate, and n-alkane, although a slight decrease was observed in n-alkane-grown cells. From these results, CtIdp1 was demonstrated to be mitochondrial Idp. The properties of mitochondrial Idp and peroxisomal Idp isozymes were proven to be similar, but they were immunochemically distinct, suggesting the presence of another gene responsible for peroxisomal Idp in C. tropicalis. Received: 11 March 1997 / Accepted: 24 June 1997  相似文献   
117.
118.
119.
Hepatitis C virus (HCV) non‐structural protein 5A (NS5A) is a multifunctional protein that is involved in the HCV life cycle and pathogenesis. In this study, a host protein(s) interacting with NS5A by tandem affinity purification were searched for with the aim of elucidating the role of NS5A. An NS5A‐interacting protein, SET and MYND domain‐containing 3 (SMYD3), a lysine methyltransferase reportedly involved in the development of cancer, was identified. The interaction between NS5A and SMYD3 was confirmed in ectopically expressing, HCV RNA replicon‐harboring and HCV‐infected cells. The other HCV proteins did not bind to SMYD3. SMYD3 bound to NS5A of HCV genotypes 1b and 2a. Deletion mutational analysis revealed that domains II and III of NS5A (amino acids [aa] 250 to 447) and the MYND and N‐SET domains of SMYD3 (aa 1 to 87) are involved in the full extent of NS5A‐SMYD3 interaction. NS5A co‐localized with SMYD3 exclusively in the cytoplasm, thereby inhibiting nuclear localization of SMYD3. Moreover, NS5A formed a complex with SMYD3 and heat shock protein 90 (HSP90), which is a positive regulator of SMYD3. The intensity of binding between SMYD3 and HSP90 was enhanced by NS5A. Luciferase reporter assay demonstrated that NS5A significantly induces activator protein 1 (AP‐1) activity, this being potentiated by co‐expression of SMYD3 with NS5A. Taken together, the present results suggest that NS5A interacts with SMYD3 and induces AP‐1 activation, possibly by facilitating binding between HSP90 and SMYD3. This may be a novel mechanism of AP‐1 activation in HCV‐infected cells.  相似文献   
120.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号