首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   661篇
  免费   105篇
  2021年   5篇
  2020年   5篇
  2017年   6篇
  2016年   13篇
  2015年   16篇
  2014年   14篇
  2013年   38篇
  2012年   45篇
  2011年   34篇
  2010年   25篇
  2009年   29篇
  2008年   23篇
  2007年   34篇
  2006年   46篇
  2005年   35篇
  2004年   35篇
  2003年   41篇
  2002年   34篇
  2001年   20篇
  2000年   11篇
  1999年   18篇
  1998年   12篇
  1997年   15篇
  1996年   7篇
  1995年   10篇
  1994年   7篇
  1993年   7篇
  1992年   4篇
  1991年   4篇
  1990年   12篇
  1989年   9篇
  1988年   13篇
  1987年   14篇
  1986年   4篇
  1985年   15篇
  1984年   15篇
  1983年   10篇
  1982年   5篇
  1981年   9篇
  1980年   8篇
  1979年   6篇
  1977年   5篇
  1975年   3篇
  1974年   5篇
  1973年   4篇
  1972年   3篇
  1969年   6篇
  1968年   3篇
  1967年   3篇
  1966年   5篇
排序方式: 共有766条查询结果,搜索用时 296 毫秒
61.
The n-alkane-assimilating diploid yeast Candida tropicalis possesses three thiolase isozymes encoded by two pairs of alleles: cytosolic and peroxisomal acetoacetyl-coenzyme A (CoA) thiolases, encoded by CT-T1A and CT-T1B, and peroxisomal 3-ketoacyl-CoA thiolase, encoded by CT-T3A and CT-T3B. The physiological functions of these thiolases have been examined by gene disruption. The homozygous ct-t1aΔ/t1bΔ null mutation abolished the activity of acetoacetyl-CoA thiolase and resulted in mevalonate auxotrophy. The homozygous ct-t3aΔ/t3bΔ null mutation abolished the activity of 3-ketoacyl-CoA thiolase and resulted in growth deficiency on n-alkanes (C10 to C13). All thiolase activities in this yeast disappeared with the ct-t1aΔ/t1bΔ and ct-t3aΔ/t3bΔ null mutations. To further clarify the function of peroxisomal acetoacetyl-CoA thiolases, the site-directed mutation leading acetoacetyl-CoA thiolase without a putative C-terminal peroxisomal targeting signal was introduced on the CT-T1A locus in the ct-t1bΔ null mutant. The truncated acetoacetyl-CoA thiolase was solely present in cytoplasm, and the absence of acetoacetyl-CoA thiolase in peroxisomes had no effect on growth on all carbon sources employed. Growth on butyrate was not affected by a lack of peroxisomal acetoacetyl-CoA thiolase, while a retardation of growth by a lack of peroxisomal 3-ketoacyl-CoA thiolase was observed. A defect of both peroxisomal isozymes completely inhibited growth on butyrate. These results demonstrated that cytosolic acetoacetyl-CoA thiolase was indispensable for the mevalonate pathway and that both peroxisomal acetoacetyl-CoA thiolase and 3-ketoacyl-CoA thiolase could participate in peroxisomal β-oxidation. In addition to its essential contribution to the β-oxidation of longer-chain fatty acids, 3-ketoacyl-CoA thiolase contributed greatly even to the β-oxidation of a C4 substrate butyrate.  相似文献   
62.
Among motile revertants isolated from flagellar hook-deficient ( flgE ) mutants of Salmonella typhimurium one produced only short flagellar filaments in L broth, despite the fact that flagellin itself has the ability to polymerize into long filaments in vitro . This pseudorevertant has an intragenic suppressor, resulting in a two-amino-acid substitution (Asp-Gln→Ala-Arg) in the C-terminal region of the hook protein, FlgE. The flagellation of the pseudorevertant was greatly affected by the concentration of NaCl in the culture media: we observed no filaments in the absence of NaCl, short filaments in 1% NaCl and full-length filaments in 2% NaCl. Electron microscopy of osmotically shocked cells showed that the number of hook–basal bodies on cells was constant under various NaCl conditions. Furthermore, we found that the mutant hook was straight rather than curved. We monitored the cellular flagellin level of this pseudorevertant under various NaCl concentrations by immunoblotting. It was revealed that little flagellin was present under NaCl-free conditions in contrast with the ordinary amounts of flagellin present in 2% NaCl. As the expression of flagellin is regulated by competitive interaction of a sigma factor, FliA, and a corresponding anti-sigma factor, FlgM, we also observed the effect of NaCl on the secretion of FlgM. FlgM was secreted into the media in more than 1% NaCl but accumulated inside the cells in the absence of NaCl, indicating that the failure of secretion of FlgM in the absence of salt was the cause of the impaired elongation of filaments.  相似文献   
63.
Comprehensive immunological evaluation is crucial for monitoring patients undergoing antigen-specific cancer immunotherapy. The identification and quantification of T cell responses is most important for the further development of such therapies. Using well-characterized clinical samples from a high responder patient (TK-f01) in an NY-ESO-1f peptide vaccine study, we performed high-throughput T cell receptor β-chain (TCRB) gene next generation sequencing (NGS) to monitor the frequency of NY-ESO-1-specific CD8+ T cells. We compared these results with those of conventional immunological assays, such as IFN-γ capture, tetramer binding and limiting dilution clonality assays. We sequenced human TCRB complementarity-determining region 3 (CDR3) rearrangements of two NY-ESO-1f-specific CD8+ T cell clones, 6-8L and 2F6, as well as PBMCs over the course of peptide vaccination. Clone 6-8L possessed the TCRB CDR3 gene TCRBV11-03*01 and BJ02-01*01 with amino acid sequence CASSLRGNEQFF, whereas 2F6 possessed TCRBV05-08*01 and BJ02-04*01 (CASSLVGTNIQYF). Using these two sequences as models, we evaluated the frequency of NY-ESO-1-specific CD8+ T cells in PBMCs ex vivo. The 6-8L CDR3 sequence was the second most frequent in PBMC and was present at high frequency (0.7133%) even prior to vaccination, and sustained over the course of vaccination. Despite a marked expansion of NY-ESO-1-specific CD8+ T cells detected from the first through 6th vaccination by tetramer staining and IFN-γ capture assays, as evaluated by CDR3 sequencing the frequency did not increase with increasing rounds of peptide vaccination. By clonal analysis using 12 day in vitro stimulation, the frequency of B*52:01-restricted NY-ESO-1f peptide-specific CD8+ T cells in PBMCs was estimated as only 0.0023%, far below the 0.7133% by NGS sequencing. Thus, assays requiring in vitro stimulation might be underestimating the frequency of clones with lower proliferation potential. High-throughput TCRB sequencing using NGS can potentially better estimate the actual frequency of antigen-specific T cells and thus provide more accurate patient monitoring.  相似文献   
64.
F1-ATPase is a molecular motor in which the γ subunit rotates inside the α3β3 ring upon adenosine triphosphate (ATP) hydrolysis. Recent works on single-molecule manipulation of F1-ATPase have shown that kinetic parameters such as the on-rate of ATP and the off-rate of adenosine diphosphate (ADP) strongly depend on the rotary angle of the γ subunit (Hirono-Hara et al. 2005; Iko et al. 2009). These findings provide important insight into how individual reaction steps release energy to power F1 and also have implications regarding ATP synthesis and how reaction steps are reversed upon reverse rotation. An important issue regarding the angular dependence of kinetic parameters is that the angular position of a magnetic bead rotation probe could be larger than the actual position of the γ subunit due to the torsional elasticity of the system. In the present study, we assessed the stiffness of two different portions of F1 from thermophilic Bacillus PS3: the internal part of the γ subunit embedded in the α3β3 ring, and the complex of the external part of the γ subunit and the α3β3 ring (and streptavidin and magnetic bead), by comparing rotational fluctuations before and after crosslinkage between the rotor and stator. The torsional stiffnesses of the internal and remaining parts were determined to be around 223 and 73 pNnm/radian, respectively. Based on these values, it was estimated that the actual angular position of the internal part of the γ subunit is one-fourth of the magnetic bead position upon stalling using an external magnetic field. The estimated elasticity also partially explains the accommodation of the intrinsic step size mismatch between Fo and F1-ATPase.  相似文献   
65.
66.
DNA methylation is an essential epigenetic mark. Three classes of mammalian proteins recognize methylated DNA: MBD proteins, SRA proteins and the zinc-finger proteins Kaiso, ZBTB4 and ZBTB38. The last three proteins can bind either methylated DNA or unmethylated consensus sequences; how this is achieved is largely unclear. Here, we report that the human zinc-finger proteins Kaiso, ZBTB4 and ZBTB38 can bind methylated DNA in a sequence-specific manner, and that they may use a mode of binding common to other zinc-finger proteins. This suggests that many other sequence-specific methyl binding proteins may exist.  相似文献   
67.
Organophosphorus compounds (OPs) such as pesticides, fungicides, and herbicides are highly toxic but are nevertheless extensively used worldwide. To detect OPs, we constructed a yeast strain that co-displays organophosphorus hydrolase (OPH) and enhanced green fluorescent protein (EGFP) on the cell surface using a Flo1p anchor system. OP degradation releases protons and causes a change in pH. This pH change results in structural deformation of EGFP, which triggers quenching of its fluorescence, thereby making this cell useful for visual detection of OPs. Fluorescence microscopy confirmed the high-intensity fluorescence displayed by EGFP on the cell surface. The yeast strain possessed sufficient OPH hydrolytic activities for degrading OPs, as measured by incubation with 1 mM paraoxon for 24 h at 30°C. In addition, with 20 mM paraoxon at 30°C, fluorescence quenching of EGFP on the single yeast cell was observed within 40 s in a microchamber chip. These observations suggest that engineered yeast cells are suitable for simultaneous degradation and visual detection of OPs.  相似文献   
68.
Blue light was found to induce shrinkage of the protoplasts isolated from first-leaf lamina pulvini of 18-day-old Phaseolus vulgaris. The response was transient following pulse stimulation, while it was sustainable during continuous stimulation. No apparent difference was found between flexor and extensor protoplasts. Protoplasts of the petiolar segment located close to the pulvinus showed no detectable response. In the plants used, the pulvinus was fully matured and the petiole was ceasing its elongation growth. When younger, 12-day-old, plants were used, however, the petiolar protoplasts did respond to blue light. The pulse-induced response was similar to that in pulvinar protoplasts, although the response to continuous stimulation was transient and differed from that in pulvinar protoplasts. No shrinkage was induced in pulvinar protoplasts when the far-red-light-absorbing form of phytochrome was absent for a period before blue-light stimulation, indicating that the blue-light responsiveness is strictly controlled by phytochrome. Inhibitors of anion channels and H(+)-ATPase abolished the shrinking response, supporting the view that protoplasts shrink by extruding ions. The response of pulvinar protoplasts is probably involved in the blue-light-induced, turgor-based movement of pulvini. The blue-light responding system in pulvini is suggested to have evolved from that functioning in other growing organs.  相似文献   
69.
We identified the gene responsible for three allelic lazy1 mutations of Japonica rice (Oryza sativa L.) by map-based cloning, complementation and RNA interference. Sequence analysis and database searches indicated that the wild-type gene (LAZY1) encodes a novel and unique protein (LAZY1) and that rice has no homologous gene. Two lazy1 mutants were LAZY1 null. Confirming and advancing the previously reported results on lazy1 mutants, we found the following. (i) Gravitropism is impaired, but only partially, in lazy1 coleoptiles. (ii) Circumnutation, observed in dark-grown coleoptiles, is totally absent from lazy1 coleoptiles. (iii) Primary roots of lazy1 mutants show normal gravitropism and circumnutation. (iv) LAZY1 is expressed in a tissue-specific manner in gravity-sensitive shoot tissues (i.e. coleoptiles, leaf sheath pulvini and lamina joints) and is little expressed in roots. (v) The gravitropic response of lazy1 coleoptiles is kinetically separable from that absent from lazy1 coleoptiles. (vi) Gravity-induced lateral translocation of auxin, found in wild-type coleoptiles, does not occur in lazy1 coleoptiles. Based on the genetic and physiological evidence obtained, it is concluded that LAZY1 is specifically involved in shoot gravitropism and that LAZY1-dependent and -independent signaling pathways occur in coleoptiles. It is further concluded that, in coleoptiles, only the LAZY1-dependent gravity signaling involves asymmetric distribution of auxin between the two lateral halves and is required for circumnutation.  相似文献   
70.
Progesterone is a mammalian gonadal hormone. In the current study, we identified and quantified progesterone in a range of higher plants by using GC-MS and examined its effects on the vegetative growth of plants. The growth of Arabidopsis (Arabidopsis thaliana) seedlings was promoted by progesterone at low concentrations but suppressed at higher concentrations under both light and dark growth conditions. The growth of the gibberellin-deficient mutant lh of pea (Pisum sativum) was also promoted by progesterone. An earlier study demonstrated that progesterone binds to MEMBRANE STEROID BINDING PROTEIN 1 (MSBP1) of Arabidopsis. In this work, we cloned the homologous genes of Arabidopsis, MSBP2 and STEROID BINDING PROTEIN (SBP), as well as of rice (Oryza sativa), OsMSBP1, OsMSBP2 and OsSBP and examined their expression in plant tissues. All of these genes, except OsMSBP1, were expressed abundantly in plant tissues. The roles of progesterone in plant growth were also discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号