首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   203篇
  免费   12篇
  国内免费   1篇
  216篇
  2022年   2篇
  2021年   2篇
  2020年   2篇
  2019年   3篇
  2018年   3篇
  2017年   1篇
  2016年   4篇
  2015年   6篇
  2014年   7篇
  2013年   6篇
  2012年   8篇
  2011年   8篇
  2010年   9篇
  2009年   6篇
  2008年   17篇
  2007年   9篇
  2006年   5篇
  2005年   10篇
  2004年   17篇
  2003年   9篇
  2002年   12篇
  2001年   2篇
  2000年   5篇
  1999年   2篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1994年   3篇
  1993年   4篇
  1992年   5篇
  1991年   4篇
  1990年   6篇
  1989年   5篇
  1988年   4篇
  1987年   5篇
  1985年   5篇
  1984年   1篇
  1983年   1篇
  1974年   4篇
  1972年   1篇
  1971年   3篇
  1970年   1篇
  1967年   2篇
排序方式: 共有216条查询结果,搜索用时 15 毫秒
161.
We report a lymphocutaneous type of nocardiosis caused by Nocardia vinacea. A 62-year-old woman with polymyositis presented with some erythematous swellings and subcutaneous abscesses on her right middle finger and the dorsum of her hand, which had persisted for 2 weeks. Culturing of the excised nodule and pus revealed orange to orange-tan colonies with scanty whitish aerial mycelia. The isolate was identified as N. vinacea on the basis of its biochemical and chemotaxonomic characteristics and the results of molecular biological analysis. In our case, oral minocycline (MINO) and trimethoprim-sulfamethoxazole (TMP-SMX) for 7 weeks did not improve the clinical manifestation, even though in vitro susceptibility testing of the isolate predicted its susceptibility to MINO and TMP-SMX. Treatment with partial surgical excision followed by TMP-SMX and meropenem administration was effective. This is the first reported case of a lymphocutaneous type of nocardiosis caused by N. vinacea.  相似文献   
162.
The pathogenesis of ulcerative colitis (UC) is unclear, but enhancement of disease activity by usage of nonsteroidal anti-inflammatory drugs suggests involvement of prostanoid in its pathophysiology. However, biological effect of prostaglandin (PG) D(2) on intestinal inflammation remains unknown. We investigated the expression of enzymes for PGD(2) synthesis, prostaglandin D synthase (PGDS), and its relation to the activity of colitis in UC patients. The role of lipocalin-type PGDS (L-PGDS) using a murine colitis model was also assessed. Tissue samples were obtained by colonic biopsies from patients with UC. Expression levels of mRNAs for L-PGDS and hematopoietic-type PGDS were investigated by quantitative RT-PCR. COX-2 and L-PGDS expression was investigated by immunohistochemistry. Localization of L-PGDS expression was also determined by in situ hybridization. In experimental study, mice were treated with dextran sodium sulfate in the drinking water to induce colitis. The degree of colonic inflammation was compared with L-PGDS(-/-) mice and control mice. The level of L-PGDS mRNA expression was increased in UC patients in parallel with disease activity. Colocalization of L-PGDS and cyclooxygenase (COX) 2 was observed in lamina proprial infiltrating cells and muscularis mucosa in UC patients. The level of hematopoietic PGDS mRNA expression did not differ from control mucosa. Dextran sodium sulfate treatment to L-PGDS(-/-) mice showed lower disease activity than control mice. We reported for the first time the presence of L-PGDS in the COX-2-expressing cells in the mucosa of active UC patients and that only L-PGDS increased with disease activity. An animal model study suggests that PGD(2) derived from L-PGDS-expressing cells plays proinflammatory roles in colitis.  相似文献   
163.
The herpes simplex virus ICP27 protein is important for the expression and nuclear export of viral mRNAs. Although several binding sites have been mapped along the ICP27 sequence for various RNA and protein partners, including the transport receptor TAP of the host cell nuclear transport machinery, several aspects of ICP27 trafficking through the nuclear pore complex remain unclear. We investigated if ICP27 could interact directly with the nuclear pore complex itself, finding that ICP27 directly binds the core nucleoporin Nup62. This is confirmed through co-immunoprecipitation and in vitro binding assays with purified components. Mapping with ICP27 deletion and point mutants further shows that the interaction requires sequences in both the N and C termini of ICP27. Expression of wild type ICP27 protein inhibited both classical, importin α/β-dependent and transportin-dependent nuclear import. In contrast, an ICP27 point mutant that does not interact with Nup62 had no such inhibitory effect. We suggest that ICP27 association with Nup62 provides additional binding sites at the nuclear pore for ICP27 shuttling, thus supporting ICP27-mediated transport. We propose that ICP27 competes with some host cell transport receptors for binding, resulting in inhibition of those host transport pathways.  相似文献   
164.
165.
Regulation of axon growth, guidance, and branching is essential for constructing a correct neuronal network. R-Ras, a Ras-family small GTPase, has essential roles in axon formation and guidance. During axon formation, R-Ras activates a series of phosphatidylinositol 3-kinase signaling, inducing activation of a microtubule-assembly promoter-collapsin response mediator protein-2. However, signaling molecules linking R-Ras to actin cytoskeleton-regulating axonal morphology remain obscure. Here we identify afadin, an actin-binding protein harboring Ras association (RA) domains, as an effector of R-Ras inducing axon branching through F-actin reorganization. We observe endogenous interaction of afadin with R-Ras in cortical neurons during the stage of axonal development. Ectopic expression of afadin increases axon branch number, and the RA domains and the carboxyl-terminal F-actin binding domain are required for this action. RNA interference knockdown experiments reveal that knockdown of endogenous afadin suppressed both basal and R-Ras-mediated axon branching in cultured cortical neurons. Subcellular localization analysis shows that active R-Ras-induced translocation of afadin and its RA domains is responsible for afadin localizing to the membrane and inducing neurite development in Neuro2a cells. Overall, our findings demonstrate a novel signaling pathway downstream of R-Ras that controls axon branching.  相似文献   
166.
167.
168.
169.
Regulation of microtubule nucleation sites is an essential step in microtubule organization. Cortical microtubule arrays in green plant cells at inter-phase are organized in a distinct manner—the array is formed in the absence of previously recognized organelles for microtubule nucleation, for example the centrosome and spindle pole body. Microtubules in the cortical array were recently found to be nucleated as branches on pre-existing microtubules via recruitment of cytosolic γ-tubulin. In this review we briefly summarize the mechanism of microtubule-dependent microtubule nucleation and discuss a possible role of this mechanism in other cellular processes and their evolution.  相似文献   
170.
A microtubule nucleates from a γ-tubuUn complex, which consists of γ-tubulin, proteins from the SPC971SPC98 family, and the WD40 motif protein GCP-WD. We analyzed the phylogenetic relationships of the genes encoding these proteins and found that the components of this complex are widely conserved among land plants and other eukaryotes. By contrast, the interphase and mitotic arrays of microtubules in land plants differ from those in other eukaryotes. In the interphase cortical array, the majority of microtubules nucleate on existing microtubules in the absence of conspicuous microtubule organizing centers (MTOCs), such as a centrosome. During mitosis, the spindle also forms in the absence of conspicuous MTOCs. Both poles of the spindle are broad, and branched structures of microtubules called microtubule converging centers form at the poles. In this review, we hypothesize that the microtubule converging centers form via microtubule-dependent microtubule nucleation, as in the case of the interphase arrays. The evolutionary insights arising from the molecular basis of the diversity in microtubule organization are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号